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Abstract

We use statistical power to compare five different statistics commonly used to detect population
subdivision: the haplotypic statistics % Hgr, Fsr, and the sequence statistics K*¢; and ¢ep. The p-
values for all statistics were estimated using randomization procedures. We evaluated these
statistics at a high dispersal rate (1%/year) that is of interest in conservation applications. At this
dispersal rate > always performed best and haplotypic statistics always outperformed sequence
statistics, which differs from previous investigations that did not examine such high rates of
dispersal. We show that the reason for poor performance of the sequence statistics is that when
dispersal is high relative 1o genetic drift the phylogeographic signal is either low or non-existent.
We suggest using simple diagnostics, such as regressing genetic differences against geographic
distance, to choose the appropriate statistic. We advise that %* should be used whenever possible,
but that if the situation occurs where most individuals have unique haplotypes, K*¢; is preferred
to ¢4 because its performance is improved by down-weighting the phylogeographic signal
relative to the frequency differences.

Introduction

Numerous statistics use genetic data in hypothesis testing to estimate whether population
subdivision is present. Because sample size is often limited and research funding is usually scarce,
it behooves scientists to use the most powerful statistics possible. We evaluate the performance
of different commonly used statistics to detect population structure using mitochondrial DNA
(mtDNA). We are particularly interested in the range of dispersal often of interest to
conservation biologists. When dispersal is so low that genetic differences are significant on an
evolutionary scale, population structure is easy to detect. However, when dispersal is high
enough to muddy or eradicate the phylogeographic signal, yet low enough that subpopulations
should be managed differently, population structure is likely to be difficult to detect. Therefore,
we focus our investigation of the performance of different statistics within the dispersal range
where we expect that statistical power will be low.

In a similar comparison, Hudson et al. (1992) found that performance, as measured by statistical
power, depended on the migration rate, the mutation rate, and whether the marker(s) under
consideration recombined. Statistics to evaluate population subdivision were divided into two
types: “haplotypic statistics”, where each haplotype is treated as a categorical variable and
frequencies are compared, and “sequence statistics” that utilize the magnitude of differences
between different haplotypes. They suggested a strategy to maximize power that switched from
using haplotypic statistics to sequence statistics when haplotypic diversity (H) became high
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(when Hj is greater than approximately 0.95). The logical explanation for switching is that as
diversily increases haplotypic frequencies decrease. Eventually most individuals have unique
haplotypes and the resolving power of frequency-based statistics becomes poor.

Taylor et al. (SC/F2K/]4) developed a method to estimate power that used a Monte Cario birth-
and-death model that allowed 40 variable base-pairs of mtDNA to evolve. Although their primary
interest was in temporally sampling the stepping-stone populations 1o estimate statistical power,
the simulations yielded the opportunity to examine a higher dispersal rate than formerly examined
and to see whether a model that was quite different from the coalescent approach used by Hudson
et al. (1992) would yield the same result. Here we present the results of our performance
evaluation of the statistics previously found to be most powerful for non-recombining markers:
the haplotype statistics x* and Hgr, plus we added the commonly used Fgp, and the sequence
statistics K*; plus the newer and commonly used ¢gp (Excoffier et al. 1992).

Methods

Power was estimated as described in Taylor et al. (SC/F2K/J4). The type of simulation model
used to generate haplotypic frequencies influences the performance of the statistics so we provide
some detail here. Because we wanted a model where we could specify abundances, include some
simple spatial dynamics and capture the behavior of a commonly used genetic marker for
population structure studies, we chose a Monte Carlo model arranged in a stepping-stone pattern
where mitochondrial DNA (miDNA) was allowed to evolve (Taylor et al. In Press; Taylor et al.
SC/F2K/J4). The model allows annual dispersal to nearest neighbor populations. We chose a
dispersal rate of 1%/year to represent a difficult case to detect population structure that will
therefore contrast performance of the different statistics. Initially all individuals in the five
populations had a single haplotype. We ran the model until the distributions for a number of
parameters remained essentially constant: haplotypic diversity (Hy), the number of haplotypes and
the measures of genetic differentiation. This stochastic equilibrium had occurred after 100,000
years. Once populations were in stochastic equilibrium we gathered genetic data every 25
generations (100 years). We gathered the following data at each discrete time interval: haplotype
frequencies, haplotypic diversity, the actual measures of population differentiation ()%, Hey, Fer,
K*sr, Osr), and the p-values for those measures for different sample sizes (n = 20, 40). For each
statistic of differentiation, the p-values were estimated by performing 5,000 randomizations
(Hudson et al. 1992). Thus, the null distribution for panmixia was formed by randomly assigning
each individual to either population A or population B and calculating the statistics of
differentiation. The p-value was the proportion of this null distribution that was equal to or
greater than the observed value calculated for the sampled individuals. The simulation was run
for 50,000 years yielding 500 sets of statistics. Statistical power is calculated as the proportion of
time that H; is correctly rejected.

Results
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The performance differed dramatically between different statistics (Table 1).

Abundance Median Hy. i He, Fer Ker Por
100 0.70 0.87 0.81 0.81 0.79 0.71
1,000 0.95 0.71 0.53 0.53 0.36 0.29

Table 1. Haplotypic diversity (H;) and statistical power at a = 0.05 for different measures of
genetic differentiation for simulations run with two different abundances. Sample size was 40
from each population and the dispersal rate was 1%]year.

The highest power was obtained using the randomization version of ¥* (Rolf & Bentzen 1989),
lower but similar values were obtained for Hgr, Fgr, and the sequence statistics (K and ¢g;)
performed most poorly. Surprisingly, g performed better for cases with low abundance and
diversity but even so, Fig. 1 illustrates that much greater power (1 - Type 2 error) for a given
level of & (Type 1 error) and sample size can be obtained simply by choosing a statistic that
performs better at the task of differentiation.

Discussion

The different performance of statistics of differentiation was well documented previously (Hudson
et al. 1992) but a number of our results were surprising. For the highest abundance we simulated
(N = 1,000) H; was right at the borderline (0.95) when sequence statistics (K*gr, ¢gp) should

have been equal to or outperformed frequency statistics ()% Hgr, and Fp). Yet, the sequence
statistics performed relatively more poorly than when diversity was low (Table 1). Presumably
the decline in performance of frequency based statistics with high diversity occurs because the
more haplotypes there are, the lower the mean frequency and the higher the chance that only a
few individuals will be represented in any of the haplotypes. Fig. 2 shows an example of the
haplotypic frequency distributions for N = 100 and N = 1,000. Although diversity is clearly much
higher for N = 1,000, most individuals have common haplotypes (50% of the population have
haplotypes with frequencies >5%, i.e. fairly common). Therefore, the frequency statistics
continue to work well. As abundance continues to increase, however, the frequency distribution
will become increasingly flat making it necessary to get higher sample sizes in order to use
haplotypic statistics.

The skewed distribution of haplotype frequencies even when N = 1,000 and H; = 0.95 explains
why the haplotypic statistics continue to perform well, but it does not explain the decreasing
performance of the sequence statistics K*g. and g The underlying premise for why sequence
statistics should add information to our picture of population structure i1s that the magnitude of
differences (in our case the number of base-pair differences) should increase as geographic
distance increases. In other words, an individual should on average be more closely related to
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her/his geographic neighbor than to an individual that is more geographically distant. If dispersal
is occurring at a level that would allow meaningful genetic differences to accumulate (at less than
one disperser/generation) then we would expect a strong correlation between genetic differences
and geographic distance. However, as dispersal increases we expect to rapidly lose that
phylogeographic signal. The strength of the signal will depend not only on dispersal but also on
abundance because genetic drift allows small populations to differentiate more rapidly than large
ones.

A simple way to examine patterns of genetic relatedness is simply to view how the mean base-pair
difference relates to geographic distance. Recall that our stepping-stone model had five
populations. Thus, we can calculate the mean base-pair difference between individuals for five
within population comparisons (geographic distance of zero), four nearest neighbor comparisons
(geographic distance of one), and so on to the final comparison of the first to the last population
in the stepping stone series (geographic distance of four). For the small abundance case (Fig. 3a)
there is a clear relation between genetic distance and geographic distance even though there is a
good deal of noise. Note, for example, that there is one within population mean base-pair
difference that is greater than between population differences that are two or even three
populations distant. Thus, the sequence statistic can be expected to contribute some signal and
much noise to the picture of population subdivision. In contrast, the larger abundance case (Fig.
3b) shows no relation between genetic differences and geographic distance. Thus, there is no
signal plus a great deal of noise. It should not surprise us then than a statistic designed to clarify
the population structure picture by incorporating a phylogeographic signal would instead make
the picture fuzzier than if we had merely looked at frequencies. We suggest this technique as a
simple diagnostic to suggest when sequence statistics are appropriate. 'We note, however, that
even in the case with high drift because of a very low abundance (N = 100), the x* performed
best.

The dispersal rate we examined was much higher than Hudson’s highest rate (Table 2). Roughly,
our rates for ANm were 16 and 160 for the N = 100 and 1,000 cases respectively. Yet even for
the Jower range that Hudson et al. (1992) examined, we can see that ” is consistently
outperforming the best performing sequence statistic K* ;.
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4Nm K* ¥

1 0.99 1.00
2 0.94 0.99
5 0.67 0.86
10 0.45 0.59

Table 2. Statistical power from Hudson et al. (1992) Table 2 when sample size from both
populations is 25.

Table 2 is not inconsistent with our results (Table 1) except in the magnitude of increased
performance of ¥* over K*¢; It is interesting that Hudson et al. compared K, which uses the
number of base-pair differences to K*g, which uses the log of the differences. Thus, for K*q, the
magnitude of the differences, which is the phylogeographic signal, is down-weighted. They found
that K*g; always yielded higher power than Kg;. That is, the sequence statistic performed better
when the strength of the phylogeographic signal was reduced making it perform more like a
haplotypic statistic. In light of our findings, we believe that this suggests that the potential of
resolving population structure by adding phylogeographic properties (through using sequence
data) is small and in cases of high dispersal adding phylogeographic data will greatly reduce our
ability to detect population structure.

Thus, we suggest modifying Hudson et al.’s (1992) previous suggested strategy, particularly for
cases where the dispersal rates of interest are high (relative to an evolutionary perspective): x*is
always the best strategy if sufficient sample size can be obtained. It is likely that if sample sizes
are too low to run ¥? that power will be so low as to make the value of any analysis of population
structure questionable. It is possible, however, that even though a dispersal rate of greater than

one disperser/generation would be of interest, the actual dispersal rate may turn out to be very

low. In such a case the phylogeographic signal would be high, the noise low and the researcher
may find highly significant differences using sequence statistics even with Jow sample size. This is
just another way of saying that the researcher might get lucky and examine a case with a very

large effect size.

Another alternative for investigating population structure when many or most individuals have
unique haplotypes is to use K*g; instead of ¢g;. We are not suggesting that researchers try a
battery of statistics and use whatever yields a significant result. Rather, we suggest that some
simple diagnostics, like regressing genetic distances on geographic distances and seeing what
proportion of the population have common haplotypes, should suggest which statistics will be
both most appropriate and most powerful. If researchers are interested in population structure at
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levels with demographically trivial dispersal but evolutionarily high dispersal then sequence
statistics are neither appropriate nor powerful.
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Figure 1. A comparison of statistics of population subdivision differentiation using tradeoff
curves. The case shown is when both populations had an abundance of 1,000 and 40 samples
were taken from each. Statistics are listed from least powerful (highest line,dg; ) to most
powerful (lowest line %*). The line of equal Type 1 to Type 2 errors is also shown for visual
clarity.
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Figure 2. The probability of individuals belonging to different haplotypes for sample population
pairs with abundances of 100 (white bars) and 1,000 (black bars). For visual clarity we show
only the 20 most common haplotypes which would include 100% of the individuals for the N =
100 case and 88% of the N = 1,000 case.
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Figure 3. Mean base-pair difference by geographic distance for observed population
comparisons (black squares) and as predicted by regressing base-pair differences on geographic
distance (diamonds connected by line for visual clarity) for N = 100 (3a) and N = 1,000 (3b).

10



