Updated estimation of prey consumption by common minke, Bryde's and sei whales in the western North Pacific

TSUTOMU TAMURA, KENJI KONISHI AND TATSUYA ISODA

Institute of Cetacean Research, 4-5, Toyomi-cho, Chuo-ku, Tokyo, 104-0055, Japan. Contact e-mail: tamura@cetacean.jp

ABSTRACT

The stomach contents of common minke (Balaenoptera acutorostrata), Bryde's (B. edeni) and sei (B borealis) whales, sampled in the western North Pacific from May to October in 2000-2014 by the Japanese Whale Research Program under Special Permit in the western North Pacific (JARPNII) were collected and examined. The main purpose of this study was to estimate the amount of fish resources consumed by the three baleen whale species, accounting for some uncertainties. Prey species of whales were identified by examining their stomach contents, and the amount of prey consumed in the research area was estimated by using information on prey consumption per capita and the numbers of whales distributed. There were seasonal and geographical changes of the prey species of each whale species. The extent of differences of estimates of consumptions among several models was 2.4-3.6 times. Based on the results obtained by three equations combined and Monte Carlo simulations, the daily prey consumptions per capita of common minke whales were 86-94kg and 83-94kg for immature male and female; and 129-141kg and 158-166kg for mature male and female, respectively. The daily prey consumptions per capita of Bryde's whales were 419-434kg and 417-428kg for immature male and female; and 577-637kg and 642-707kg for mature male and female, respectively. The daily prey consumptions per capita of sei whales were 397-421kg and 436-468kg for immature male and female; and 524-539kg and 610-647kg for mature male and female, respectively. The CVs of the daily prey consumption consumed by whales per capita were in the range 0.2-0.3. The seasonal prey consumption during May-September in the two periods (2000-2007, 2008-2013) by three baleen whale species were 1.1 and 1.2 million tons, respectively. The prey consumption of Japanese anchovy, mackerels and Pacific saury by three baleen whale species in the two periods were estimated as 674-724 thousand tons, 43-70 thousand tons and 48-56 thousand tons, respectively. The CVs of the seasonal prey consumption consumed by whales were in the range 0.3-0.4. These values were equivalent to 22-48%, 5-66% and 2-7% of the biomass of each fish resources in the western North Pacific. These estimates on prey consumption will be useful as input data in ecosystem models.

KEYWORDS: COMMON MINKE WHALE; BRYDE'S WHALE, SEI WHALE, NORTH PACIFIC; SCIENTIFIC PERMIT

INTRODUCTION

Baleen whales feed on a variety of prey from small zooplankton to fish, playing an important role in the food web in the western North Pacific because of their large biomass. The Second Phase of Japanese Whale Research Program in the Western North Pacific (JARPNII) conducted samplings of baleen whale species such as common minke (*Balaenoptera acutorostrata*), Bryde's (*B. edeni*) and sei (*B. borealis*) whales that abundantly occur off the coast of Japan, and are important components of the ecosystem in their feeding grounds.

Although these three baleen whale species occur in the JARPNII research area, their feeding habits and distribution differ. Common minke whale feed on zooplankton and large sized fish and squids such as Pacific saury (*Cololabis saira*), mackerels (*Scomber japonicus*, *S. australasicus*), walleye pollock (*Gadus chalcogrammus*) and Japanese common squid (*Todarodes pacificus*) involving a wide range of prey size (Kasamatsu and Hata, 1985; Kasamatsu and Tanaka, 1992). The information on feeding habitat in the Bryde's whales was available from the commercial whaling period, and showed that krill, Japanese anchovy (*Engraulis japonicus*), Chub mackerel (*Scomber japonicus*), Japanese sardine (*Sardinops melanostictus*), and horse mackerel (*Trachurus japonicus*) were preys of this whale species in the western North Pacific (Nemoto, 1959). The sei whale is known to feed on a wide spectrum of marine animals such as krill, Japanese anchovy, chub mackerel, Pacific saury and Japanese common squid. According to Nemoto (1962), sei whales feed mainly copepods in the northern part of the North Pacific, but they likely feed on fishes and squids off the Pacific coast of northern Japan. In the southern Aleutian waters, Pacific saury was also reported as important prey for sei whales (Nemoto, 1959; Kawamura, 1982).

It should be noted that for previous studies based on commercial whaling, only qualitative information of stomach contents was available, and the quantitative information was very limited. This was due to the fact that the stomachs were usually cut in breaking the abdominal cavity to keep meat fresh.

The Japanese Whale Research Program under Special Permit in the western North Pacific (JARPN) was conducted between 1994 and 1999. JARPN had two main objectives: a) population structure and b) feeding ecology of common minke whales in the western North Pacific. During JARPN surveys, qualitative and quantitative data on prey consumption of common minke whales in the western North Pacific were obtained. Results of some feeding ecology studies on common minke whales based on JARPN are available (Tamura, 1998; Tamura *et al.*, 1998; Tamura and Fujise, 2002; Lindstrom *et al.*, 1998).

Based on results of JARPN review, it was proposed that JARPN be continued and developed to a second phase: JARPNII (Government of Japan, 2000, 2002). The first objective of JARPNII is feeding ecology issues. The overall goal of the JARPNII was to contribute to the conservation and sustainable use of marine living resources including whales in the western North Pacific, especially within Japan's EEZ.

In 2009, the JARPNII review workshop was conducted by IWC/SC (IWC, 2010). Results on prey consumption by common minke, Bryde's and sei whales were presented (Tamura *et al.*, 2009a, b). Regarding the prey consumption rate estimates presented (Tamura *et al.*, 2009a, b, c), one of the major concern of the workshop was related to the lack of full treatment of uncertainty. As part of the treatment of uncertainty the workshop recommended that the analyses of the JARPNII data should: (a) incorporate the use of several reasonable models and include the range of possible results in reporting the work; (b) use that range in subsequent analyses (including any ecosystem modelling) that employ these daily/annual consumption estimates and (c) undertake sensitivity analyses for the range of parameter values used in the consumption equations (IWC, 2010).

The purpose of this study was to update the estimates of prey consumption by common minke, Bryde's and sei whales by taking into consideration the recommendations from the 2009 JARPNII review workshop, accounting for some uncertainties.

MATERIALS AND METHODS

Research area, year and sample size

The research area of the JARPNII comprised part of sub-areas 7, 8 and 9 (IWC, 1994) (Figure 1). A total of 1,480 minke whales, 680 Bryde's, and 1,195 sei whales were examined in this study (Table 1). After sampling, whales were brought to the research base vessel where the animals were examined by a biologist on board. All whales were sampled during daylight hours, between 06:00 and 19:00h (ship time).

Sampling and treatment of stomach contents from whales

Baleen whales have four chambered stomach systems (Hosokawa and Kamiya, 1971; Olsen *et al.*, 1994). The stomach contents remain in the forestomach (1st. stomach) and fundus (2nd. stomach).

The stomach contents were removed from each compartments and weighed to the nearest 0.1kg on the ship's flensing deck after capture. The analysis of prey consumption in this study was based on data collected from the first compartment (forestomach) and second compartment (fundus). A sub-sample (1-5kg) of stomach contents was removed and frozen and/or fixed with 10% formalin water for later analyses. The stomach contents were transferred to a system consisting of three sieves (20mm, 5mm and 1mm), which were applied in the Norwegian scientific research to filter off liquid from the rest of the material (Haug *et al.* 1995).

To examine the daily feeding rhythms of the whales, the freshness of prey in the forestomach was categorized into four digestion levels:

- F = fresh (prey not affected by digestion),
- fff = lightly digested (prey slightly affected by digestion),
- ff = moderately digested (prey moderately to highly fragmented), and
- f = heavily digested (unidentifiable remains or indigestible parts only).

Data analyses

Biological data

An estimate of the daily prey consumption requires the use of some additional biological and morphometric data. Body length of the whales was measured to the nearest 1cm from the tip of the upper jaw to the deepest part of the fluke notch in a straight line. Body weight was measured using large weighing machine to the nearest 50kg. Energy requirements are different for sexual maturity classes; therefore, estimations of the daily prey consumption in this study took into consideration information on sexual maturity. Sexual maturity of each whale was defined by testis weight and ovaries observation.

Prey species identification and stomach contents weight

In the laboratory prey species in the sub-samples were identified to the lowest taxonomic level as possible. Undigested preys were identified using morphological characteristic, based on different sources: copepods (Brodskii, 1950), euphausiacea (Baker *et al.*, 1990), squids (Kubodera and Furuhashi, 1987) and fish (Masuda *et al.*, 1988; Chihara and Murano, 1997). The otoliths and jaw plate were used to identify the fish with advanced stage of digestion (Morrow, 1979; Ohe, 1984; Kubodera and Furuhashi, 1987; Arai, 1993).

When undigested fish and squid were found, fork length, mantle length and the weights were measured to the nearest 1mm and 1g, respectively. This data were used for restoring their stomach contents with advanced stage of digestion.

The total number of each fish and squid species in the sub-sample were calculated by adding to the number of undigested fish or squid, undigested skulls and half the total number of free otoliths. The total weight of each prey species in the sub-sample was estimated by multiplying the average weight of fresh specimens by the number of individuals. The total number and

weight of each prey species in the stomach contents were estimated by using the figures obtained from the sub-sample and the total weight of stomach contents.

Prey composition (W %) in each season and period

In order to simplify the comparison of feeding indices, prey species were divided as follow: copepods (*Neocalanus cristatus*, *N. plumchrus*, *Calanus* sp.), krill (*Euphausia pacifica*, *E. similes*, *E. gibboides*, *Thysanoessa gregaria*, *Nematoscelis difficilis*), Japanese anchovy, Japanese sardine (*Sardinops melanostictus*), Pacific saury, walleye pollock, Mackerels, oceanic lightfishes (*Vinciguerria nimbaria; Maurolicus japonicus*), other squids (Japanese common squid, minimal armhook squid (*Berryteuthis anonychus*), and others) and other fishes (Japanese pomfret (*Brama japonica*), Atka mackerel (*Pleurogrammus monopterygius*), Salmonidae).

The relative prey composition (%) in weight of each prey species (*RW*) in each season and period was calculated as follows:

 $RW = (W_i / W_{all}) \times 100$

 W_i = the weight of contents containing prey group *i*

 W_{all} = the total weight of contents analyzed.

Estimation of daily and seasonal prey consumption in each whale species

Daily prey consumption

The amount of prey consumption consumed by three baleen whale species is estimated using theoretical energy requirement calculations. The uncertainties associated to the relevant parameters were treated by Monte Carlo simulations.

The daily prey consumption (D_{kg}) in each sexual maturity class was estimated from the standard metabolic rate (SMR_{kJ}) and energy deposit according to the following equations:

$$D_{kg} = SMR_{kJ} / (E_{KJ} * AE)$$

(1)

(6)

Where D_{kg} is daily prey consumption (kg day⁻¹), SMR_{kJ} is the standard metabolic rate (kJ day⁻¹), E_{kJ} is the caloric value of prey species (kJ kg⁻¹), and AE is Assimilation efficiency (%). The details of these items are described as follows:

SMR (STANDARD METABOLIC RATE, ALLOMETRIC RELATIONSHIPS)

The uncertainty in several components involved in estimating the amounts and types of prey consumed by whales was assisted by a recent review by Leaper and Lavigne (2007) and Tamura *et al.* (2009c). They considered that the appropriate consumption estimates is between the high end of Equation 1 and the low end of Equation 2. The estimate of consumption by Equation 3 was considered by the authors at the upper range of these reasonable values. Equation 4 is used by PICES for estimating prey consumption of marine mammals (Hunt *et al.*, 2000).

Equation 1: $BMR = 0.42 M^{0.67}$ (Innes <i>et al.</i> , 1986)	(2)
Equation 2: $SMR = 2,529.2 M^{0.524}$ (Boyd, 2002)	(3)
Equation 2: $SMR = 2,323,237$ (Boyd, 2002) Equation 3: $SMR = 863.6M^{0.783}$ (Sigurjónsson and Víkingsson, 1997)	(3)
	(4)
Equation 3-1: $SMR = 690.36M^{0.783}$ (Revised from Sigurjónsson and Víkingsson, 1997)	(5)

Equation 4: $SMR = 803.71M^{0.75}$ (Perez *et al*, 1990)

SMR is the daily prey consumption (expressed by KJ day⁻¹) and *M* is body mass in kg. It should be noted here that the estimates from Equation 1 depend only on the body weight data (expressed in kg). The estimates from Equations 2, 3 and 4 require body weight data (expressed in kg) and energy content of prey (expressed in KJ kg⁻¹). Equation 3.1 excluded an *AE* value of 80% from Equation 3. In this study, three equations (Equations 2, 3-1 and 4) were used in the sensitivity analysis with 10,000 Monte Carlo simulations using the electronic software package (Oracle ® Crystal Ball: Release 11.1.2.3.). The details of these parameters are described as follows:

The mean, minimum and maximum body weight were calculated for each sexual maturity stage. These weights were obtained from JARPN and JARPNII survey. Body weight of each whale species sampled in each season was shown in Table 2. The body weight distribution in each sexual maturity assumed a triangular distribution with minimum, maximum and average values.

The mean caloric value of copepod (*Neocalanus cristatus, N. plumchrus*), krill (*Eupahusia pacifica*), Japanese sand lance, Japanese anchovy, Japanese sardine, Pacific saury, Chub mackerel, walleye pollock, oceanic lightfishes and Japanese common squid, mesopelagic squids (*Taningia danae, Histioteuthis dofleini, Belonella pacifica borealis*) were measured using bomb caloric meter (Table 3). These samples were obtained from the stomach contents of whales. Prey composition (Weight of %) of whales sampled were calculated in each period and season (Table 4).

The energy contents consumed by whales were calculated based on their prey composition in research area based on Tables 3 and 4 (Table 5). The distribution assumed a triangular distribution with minimum, maximum and average values.

Although an Assimilation Efficiency (AE) of 0.8 (80%) is commonly assumed, this value clearly vary with prey condition, size and species. The range of assimilation efficiency was assumed between 0.75 (75%) and 0.85 (85%) and used randomly in the sensitivity analysis. The distribution assumed a uniform distribution between 0.75 and 0.85.

Many baleen whales are generally known to migrate between the feeding ground in high latitudinal waters in summer and the breeding ground in low latitudinal waters in winter. There are some uncertainties, because the ratio of high feeding season and low feeding season (r) and the proportion (P) of the energy intake per year during high feeding season are assumed without actual data. For example, Lockyer (1981a) indicated that around 83% of the annual energy intake in Southern Hemisphere balaenopterid species is ingested during the summer season. If the days of high feeding season (HD) was 120 days and the rest days were low feeding season (LD), r becomes 0.10. Leaper and Lavigne (2007) was estimated the r to be from 0.34 (Antarctic minke whales) to 0.62 (North Atlantic minke whales) based on other literatures.

The *r* was calculated as following:

r = (365(1-P)) / (365-HD)) / (365P/HD)

P is the proportion of amount during high feeding season per annual energy intake assumed.

The daily prey consumption of high feeding season was assumed to be the feeding index of high feeding season (*H index*). If the *HD* was 150days and the proportion of amount during high feeding season per annual energy intake assumed 80% (0.8), *H index* was 1.95. *HF* is the feeding index as a multiplicative factor greater than one. The *H index* was calculated as following:

H index = 365P / HD

(0)

(7)

The range of H index was assumed between 1.42 and 2.74 and used randomly in the sensitivity analysis (Table 6). The distribution assumed a triangular distribution with minimum, maximum and average values (1.95).

Based on this assumption, the daily and seasonal prey consumption of high feeding season was calculated using Equations 2, 3-1, 4 and *H index*.

SMR of high feeding season = *H* index * *SMR*

(9)

THE BODY MASS (M) OF EACH SEX AND REPRODUCTIVE STATUS OF WHALES

The composition of maturity stages of whales sampled is shown in Table 7. Males of minke, Bryde's and sei whales were defined as sexually mature by testis weight (larger side) of more than 290g, 560g and 1,090g, respectively (Bando *et al.*, unpublished data). Female were defined as sexually mature by the occurrence of at least one corpus luteum or albicans in their ovaries. These criteria are practical ones and confirmed biologically (Bando *et al.*, per com.).

The body mass data (< 22,000kg) were obtained directly by using the large electronic weighing system in JARPNII. If the body mass was over 22,000kg, we measured it separately. This method for obtaining the body mass data was evolved one compared with past methods. With regard to the measurement of body mass by sex and reproductive status, there seems to be little uncertainty.

UNCERTAINTIES ON SEASONAL PREY CONSUMPTION IN HIGH FEEDING SEASON

In the Southern Hemisphere, immature animals and mature male of Antarctic minke whale were estimated to spend 90 days in the feeding grounds, mature female spend 120 days (Lockyer, 1981a, b). Hinga (1979) assumed that baleen whales spend 120 days in the Antarctic (feeding area).

If the proportion of the energy intake per year during high feeding season was between 70-90%, the relationship between values of residence days in feeding area and percentage of annual prey consumption is as summarised in Table 6. The range of *H index* in minke, Bryde's and sei whales were estimated to be 1.95 (Range: 1.70-2.19) during 150 days of feeding (from May to September). These indexes were applied for estimating seasonal consumption of whales in the research area.

Uncertainty of the seasonal estimated numbers distributed of whales in each period and season was treated as following. The number of whales distributed in each region and year was estimated by Hakamada *et al.* (2009) and Hakamada and Matsuoka (2016: SC/F16/JR12) (Table 8). The population of baleen whales is sometimes segregated by sex and reproductive status. For example, mature male of common minke whale distribute dominantly in the research area, especially in offshore area such as sub-areas 8 and 9. The seasonal number of whales distributed (early and late) in each sex, reproductive status in each sub area and year were calculated (Tables 7 and 8).

Prey species abundance and fisheries catch information

JAPANESE ANCHOVY

Japanese anchovy is widely distributed in the western North Pacific. Some researches on biomass are conducted by the National Research Institute of Fisheries Science based on surface trawl net and echo sounder (Table 9).

MACKERELS

Mackerels are widely distributed in the western North Pacific. Some researches on biomass are conducted by the National Research Institute of Fisheries Science based on surface trawl net and echo sounder (Table 9).

PACIFIC SAURY

Pacific saury is widely distributed in the western North Pacific. Some researches on biomass are conducted in June and July since 2003 by the Tohoku National Fisheries Research Institute based on surface trawl net (Table 9).

RESULTS

Diet of whales in the study area

Common minke whales

A total of fourteen preys, including one species of copepod, two of euphausiids, two of squids and nine of fishes were identified in 1,480 stomachs of minke whales (Table 10).

Bryde's whales

A total of eighteen preys, including five species of euphausiids, one of squid and twelve of fishes were identified in 680 stomachs of Bryde's whales (Table 10).

Sei whales

A total of twelve preys, including three species of copepods, three of euphausiids, one of squid and five of fishes were identified in 1,195 stomachs of sei whales (Table 10).

Diurnal changes in feeding activity

The composition of freshness categories is shown in Figure 2. This figure shows that the proportion of fresh and lightly digested categories was high (> 37%), and there was no trend throughout the day.

Stomach contents weight and RSC

The average and maximum weight and the ratio of stomach contents weight to body weight, expressed as a percentage (RSC) of fresh or lightly digested stomach contents (freshness category F and fff) by different reproductive classes are shown in Table 11 by whale species.

Common minke whales

The average weights were 27.1kg and 34.9kg for immature males and females, respectively and 48.8kg and 62.1kg for mature males and females, respectively. The average and maximum of RSC in each sexual maturity of whales were around 1% and 3-4%, respectively.

Bryde's whales

The average weight and RSC were 106.8kg and 76.4kg for immature males and females, respectively and 118.7kg and 157.6kg for mature males and females, respectively. The average and maximum of RSC in each sexual maturity of whales were around 1% and 3-4%, respectively.

Sei whales

The average weight and RSC were 74.2kg and 69.2kg for immature males and females, respectively and 88.4kg and 145.3kg for mature males and females, respectively. The average and maximum of RSC in each sexual maturity of whales were around 0.5% and 3-4%, respectively.

The size distribution of main prey species consumed by common minke, Bryde's and sei whales

Japanese anchovy

The size distributions of Japanese anchovy in the stomach of three baleen whales are shown in Figure 3-1. Minke whale feed on larger anchovies (fork length ranged from 54 to 155mm with a single mode at 120-130mm). Bryde's whale feed on smaller anchovies (fork length ranged from 20 to 153mm with a single mode at 50-75mm). The fork length of Japanese anchovy ingested by sei whales ranged from 24 to 143mm with a single mode at 120mm.

Mackerels

The size distributions of mackerels in the stomach of three baleen whales are shown in Figure 3-2. Minke whale fed on the largest mackerels (fork length ranged from 70 to 280mm with a single mode at 240mm).

Pacific saury

The size distributions of Pacific saury in the stomach of three baleen whales are shown in Figure 3-3. No Pacific saury was found from the stomach contents of Bryde's whale. There were two modal distributions (standard length: 200-230mm and 300mm) in Pacific saury consumed by minke and sei whales, but minke whale fed on larger Pacific saury.

The daily prey consumption estimates *per capita* of each sex and reproductive status of each whale species in each model

The daily prey consumption estimates *per capita* of each sex and reproductive status were shown in Table 12 and Appendix 1, by whale species. The estimates of Eq-3-1 were 2.4-3.6 times larger than the estimates of Eqn. 2. The results of the calculation based on three equations combined were as following (10,000 Monte Carlo simulations).

Common minke whales

In early season (May and June), the daily prey consumption *per capita* was 86kg and 83kg for immature males and females, respectively; and 141kg and 166kg for mature males and females, respectively. In late season (From July to September), it was 94kg and 94kg for immature males and females, respectively; and 129kg and 158kg for mature males and females, respectively. The CVs were in the range 0.2-0.3.

Bryde's whales

In early season, the daily prey consumption *per capita* was 434kg and 417kg for immature males and females, respectively; and 637kg and 707kg for mature males and females, respectively. In late season, it was 419kg and 428kg for immature males and females, respectively and 577kg and 642kg for mature males and females, respectively. The CVs were in the range 0.2-0.3.

Sei whales

In early season, the daily prey consumption *per capita* was 421kg and 468kg for immature males and females, respectively; and 539kg and 647kg for mature males and females, respectively. In late season, it was 397kg and 436kg for immature males and females, respectively and 524kg and 610kg for mature males and females, respectively. The CVs was around 0.2.

The seasonal prey consumption in each research period

The seasonal prey consumption estimates were shown in Table 13 and Appendix 1, by whale species. The estimates of Eq-3-1 were 2.4-3.6 times larger than the estimates of Eqn. 2. Estimate of seasonal prey consumption based on three equations combined (10,000 Monte Carlo simulations) during May-September in two periods (2000-2007, 2008-2013) by three baleen whale species were 1.1 and 1.2 million tons, respectively. The prey consumptions of Japanese anchovy, mackerels and Pacific saury by three baleen whale species in the two periods were estimated as 674-724 thousand tons, 43-70 thousand tons and 48-56 thousand tons per year, respectively. The results for each whale species were the following.

Common minke whales

The seasonal prey consumptions in the 2000-07 and 2008-2014 periods were 82 thousand tons and 70 thousand tons, respectively. The CVs were around 0.3. They fed mainly on Japanese anchovy and Pacific saury. The consumptions of Japanese anchovy in the two periods were 34 thousand tons and 15 thousand tons, respectively. The consumptions of Pacific saury in the two periods were 40 thousand ton and 25 thousand tons, respectively. The CVs were in the range 0.3-0.5.

Bryde's whales

The seasonal prey consumptions in the 2000-07 and 2008-2014 periods were 502 thousand tons and 714 thousand tons, respectively. The CVs were in the range 0.3-0.4. They fed mainly on Japanese anchovy and krill. The consumptions of Japanese anchovy in the two periods were 418 thousand tons and 511 thousand tons, respectively. The consumptions of krill in the two periods were 74 thousand tons and 176 thousand tons, respectively. The CVs were in the range 0.3-0.4.

Sei whales

The seasonal prey consumptions in the 2000-07 and 2008-2014 periods were 533 thousand tons and 442 thousand tons, respectively. The CVs were in the range 0.2-0.3. They fed mainly on Japanese anchovy, copepods and mackerels. The consumptions of Japanese anchovy in the two periods were 272 thousand tons and 148 thousand tons, respectively. The consumptions of copepods in the two periods were 78 thousand ton and 155 thousand tons, respectively. The consumptions of mackerels in the two periods were 42 thousand ton and 66 thousand tons, respectively. The CVs were in the range 0.2-0.3.

DISCUSSION

Diet of whales in the study area

This study showed that the prey species of three baleen whale species in the western North Pacific during May and September in the years 2000-2014, included various pelagic species of zooplankton, squid and fishes. Prey species of three baleen whale species varied both geographically and temporally. It was confirmed that three baleen whale species in the western North Pacific are euryphagous, similar to those in the Northeast Atlantic.

Geographical, seasonal changes of prey species

The results showed that there was geographical and seasonal change of prey species in the western North Pacific. In the offshore area, common minke whales fed on Japanese anchovy during May and June, and on Pacific saury during July to September. Minke whales feeding on Pacific saury were distributed in northern latitudes in comparison with whales feeding on Japanese anchovy, so the seasonal movement of minke whale overlap with the distribution of Pacific saury. In the north east part of sub-area 9 over the Emperor Sea Mountains, minke whale abundantly fed on minimal armhook squid in August. This result suggested that the minke whale use the feeding area near Emperor Seamounts where the minimal armhook squid occur in summer (Konishi and Tamura, 2007). Minke whale also adapted to coastal areas where large whales rarely occur. In sub-area 7, walleye pollock was one of the important prey species in addition to Pacific saury and anchovy off northern Japan. For the size of fish in the stomachs, minke whales fed on large-sized walleye pollock over the continental break and slope around 200-300m water depth.

The dominant prey species of Bryde's whale was Japanese anchovy and krill during May to September. There was no seasonal change of prey species for this whale species.

Sei whale fed on Japanese anchovy and copepods dominantly during survey season in most of the years. However they mostly fed on mackerels in the 2005 season, and this indicated that sei whale feed on most aggregated prey species near the surface. At the offshore area under the effects of Kuroshio-current extension, the prey species fed by large baleen whales depend on what the current carry in early summer.

The results showed that there was size difference of prey species. Common minke whale fed on larger Japanese anchovy, Pacific saury and mackerels than other whale species. The smaller anchovy (fork length <8cm) and mackerels (fork length <25cm) hatched in this year. These fishes distributed in the southern part of the research area. Differences in the prey size among the stomach contents of three baleen whales might reflect to geographical distribution of prey species in the research area.

Yearly change of prey species

For three baleen whale species, the most dominant prey species was Japanese anchovy in the 2000-2007 JARPNII survey years. Japanese anchovy is distributed shallower than 30m depth, where it feeds on copepods (Kondo, 1969). The anchovy are distributed widely in temperate waters of the western North Pacific. Japanese anchovy migrate to this research area to feed copepod from June through September (Kondo, 1969). However, recently years (since 2012), the occurrence of Japanese anchovy in stomach contents was decreasing.

On the other hand, the occurrences of Japanese sardine and mackerels in stomach contents were increasing. Konishi *et al* (2016: SC/F16/JR23) also noted that the common minke, Bryde's and sei whales were highly dependent on small pelagic fish, *i.e.* Japanese anchovy, Pacific saury and mackerels in addition to copepods and euphausiids. The trend of prey compositions in the three baleen whale species differ among whale species. For example, the main prey species of sei whale showed drastic change from the Japanese anchovy in early 2000s to mackerels and Japanese sardine in late 2000s. Kasamatsu and Hata (1985) reported that Chub mackerel was the most important prey species of common minke whales in western Pacific (a northern part of sub-area 8) in August. However, in our surveys, the composition of mackerels was low. Kasamatsu and Tanaka (1992) examined annual changes of prey species based on the catch records of small type whaling in the seven whaling grounds off Japan from 1948 to 1987. In Pacific coast of Hokkaido (a part of sub-area 7W) from April to October, prey species recorded were krill, squid, Japanese sardine, Japanese anchovy, chub mackerel, walleye pollock and Pacific saury and so on. They noted that the change of prey species of minke whales from Chub mackerel to Japanese sardine in 1977, from Japanese sardine to

Pacific saury in 1996, from Pacific saury to Japanese sardine in 2012 corresponded with a change of the dominant species taken by commercial fisheries in the same area in 1976, 1996, 2012, respectively. Nemoto (1959) reported that Bryde's whales fed on krill, Japanese anchovy and Chub mackerel in the Pacific coast of Japan. According to Nemoto (1959, 1962) and Nemoto and Kawamura (1977), sei whales fed mainly copepods in the northern part of the North Pacific, but they likely feed on fishes and squids in the Sanriku and Hokkaido coastal waters of Japan.

Differences in the prey composition reflected to local and seasonal changes in the relative abundance of these prey species in the research area (Tamura *et al.*, 2016 (SC/F16/JR17)). Three baleen whale species feed on prey at the surface during their seasonal migration to the feeding area. The fluctuation of prey species of baleen whales seems to reflect that these baleen whales are opportunistic feeders with a broad diet and with flexible feeding habits.

Daily prey consumption *per capita* taking into account uncertainties

The estimates from three energetic models (Eq-2, 3-1 and 4) were compared to observed stomach contents weight. Leaper and Lavigne (2007) considered that the appropriate consumption estimates is between the high end by Eq 3-1 and the low end by Eq 2. It should be noted that these crude stomach contents data represented a quantity of one feeding. There are notable two points. First, the composition of freshness categories showed that there had no trend throughout the day. Secondly, in the results of the recent other research activity, some baleen whale species were estimate to dive many times for feeding in a day using data logger system (*e.g.* Fiedler *et al.*, 1998; Acevedo-Gutierrez *et al.*, 2002; Ishii *et al.*, 2016 (SC/F16/JR25). Thirdly, for sei whales in particular, there is a possibility that the observed stomach contents are far less than total daily consumption, because they often feed on prey through skimming. They seem to feed continuously in the feeding grounds in a day. Then the consumption estimate from Eq. 2 seems to be underestimated, because consumption estimates by Eq. 2 is equal only to the intake of one or two time. If the average number of times of prey intake per day can be obtained, it might be possible to estimate narrower range of daily prey consumption using the data of observed stomach contents weight. Tagging technology of data logger and stomach contents information will provide such data in the future.

Seasonal prey consumption by whales taking into uncertainties

The values of Eq-3-1 were 2.4-3.6 times larger than the value of Eqn. 2. This is due to differences in body mass, and the effect is larger for large whales. The uncertainty derived from the use of different energetic models seems to be appropriately captured in the Monte Carlo simulation.

The feeding impact by whales on fisheries resources

The consumptions of Japanese anchovy, mackerels and Pacific saury by three baleen whales during May to September were estimated in 674-724 thousand tons, 43-70 thousand tons and 48-56 thousand tons, respectively. These values were equivalent to 22-48%, 5-66% and 2-7% of the each fish resources in the western North Pacific (Table 14). To evaluate the interaction between whale and fisheries, long-term information of prey composition of whales, accurate abundance of prey species and each whale, and accurate resident period of each whale are needed. Furthermore, there is a need to understand the potential for each whale to have an impact on commercial fisheries, either directly or indirectly using simulation models for specific geographical regions.

ACKNOWLEDGEMENTS

We would like to thank all captains, crews and researchers, who were involved in offshore component of JARPNII surveys from 2000 to 2014. Our sincere thanks to Dr. Luis A. Pastene of the Institute of Cetacean Research (ICR) for the valuable suggestions and useful comments on this paper.

REFERENCES

Acevedo-Guitierrez, A., Croll, D.A. and Tershy, B.R. 2002. High feeding costs limit dive time in the largest whales. *The journal of experimental of Biologist*. 205. 1747-1753.

Arai, M. 1993. Usujiri shyuuhenkaiiki ni seisokusuru gyorui no jiseki no hikakukeitaigakuteki kenkyuu [Comparative study on morphological otoliths for several fishes of Usujiri and adjacent waters in Southern Hokkaido, Japan]. Graduation Thesis, Hokkaido University, 98 pp. [In Japanese].

Baker, A. de. C., Boden, B. P. and Brinton, E. 1990. A practical guide to the euphausiids of the world. Natural History Museum Publications: London, 96 pp.

Boyd, I.L. 2002. Energetics: consequences for fitness. pp. 247-77. In: Hoelzel. A.R. (eds). Marine Mammal Biology: An Evolutionary Approach. Blackwell Science. Oxford. 448pp.

Brodskii, K. A. 1950. Calanoida of the far eastern seas and polar basin of the USSR. Opred. Faune SSSR, 35: 1-442. [In Russian] (Transl: Israel Program for Scientific Translations, Jerusalem 1967). Government of Japan, 2002. Research Plan for Cetacean Studies in the Western North Pacific under Special Permit (JARPNII). Paper SC/54/O2 presented to the IWC Scientific Committee, May 2002 (unpublished). 115pp.

Chihara, M. and Murano, M. (eds.) 1997. An illustrated guide to marine plankton in Japan. Tokai Univirsity Press, Tokyo, Japan, 1574 pp.

- Fiedler, P.C., Reilly, S.B., Hewitt, R.P., Demer, D., Philbrick, V.A., Smith, S., Armstrong, W., Croll, D.A., Tershy, B.R. and Mate, B.R. 1998. Blue whale habitat and prey in the California Chanel Island. Deep-Sea Research II. 45. 1781-1801.
- Government of Japan. 2000. Research Plan for Cetacean Studies in the Western North Pacific under Special Permit (JARPNII) (Feasibility study plan for 2000 and 2001). Paper SC/52/O1 presented to the IWC Scientific Committee, June 2000 (unpublished). 68pp.
- Government of Japan. 2002. Research Plan for Cetacean Studies in the Western North Pacific under Special Permit (JARPNII). Paper SC/54/O2 presented to the IWC Scientific Committee, May 2002 (unpublished). 115pp.
- Hakamada, T., Matsuoka, K. and Miyashita, T. 2009. Distribution and the number of western North Pacific common minke, Bryde's, sei and sperm whales distributed in JARPNII Offshore component survey area. Paper SC/J09/JR15 presented to the JARPNII Review Workshop, Tokyo, January 2009 (unpublished). 18pp.
- Hakamada, T. and Matsuoka, K. 2016. The number of western North Pacific common minke, Bryde's and sei whales distributed in JARPNII offshore component survey area. Paper SC/F16/JR12 presented to the JARPNII special permit expert panel review workshop, Tokyo, February 2016 (unpublished). ** pp.
- Hunt, G. L., McKinnell, S. M. and Kato, H. 2000. Predation by marine birds and mammals in the Subarctic North Pacific Ocean. *PICES Science Report*. 14:1-165.
- Haug, T., Gjøsæter, H., Lindstrøm, U. and Nilssen, K. T. 1995. Diets and food availability for northeast Atlantic minke whale *Balaenoptera acutorostrata* during summer 1992. *ICES Journal of Marine Science*, 52: 77-86.
- Hinga, K. H. 1979. The food requirements of whales in the southern hemisphere. Deep-Sea Research. 26A:569-77.
- Hosokawa, H. and Kamiya, T. 1971. Some observations on the cetacean stomachs, with special considerations on the feeding habits of whales. *Rep. Whales Res. Inst*, 23: 91-101.
- Innes, S., Lavigne, D.M., Earle, W.M. and Kovacs, K.M. 1986. Estimating feeding rates of marine mammals from heart mass to body mass ratios. Mar. Mammal Sci. 2(3):227-9.
- Ishii, M., Murase, H., Fukuda, Y., Sawada, K., Sasakura, T., Tamura, T., Bando, T., Matsuoka, K., Shinohara, A., Nakatsuka, S., Katsumata, N., Miyashita, K. and Mitani, Y. 2016. A short note on feeding behavior of sei whale observed in JARPNII. Paper SC/F16/JR20 presented to the 2016 JARPNII final review, February, 2016 (unpublished). **pp.
- International Whaling Commission. 1994. Report of the Working Group on North Pacific minke whale. Rep. int. Whal. Commn. 44: 120-44.
- International Whaling Commission. 2010. Report of the expert workshop to review the ongoing JARPNII programme. J. Cetacean Res. Manage. 11 (suul.2): 405-49.

Kasamatsu, F and Hata, T. 1985. Notes on minke whales in the Okhotsk Sea -West Pacific area. Rep. int. Whal. Commn. 35:299-304.

Kasamatsu, F. and Tanaka, S. 1992. Annual changes in prey species of minke whales taken off Japan 1948-87. Nippon Suisan Gakkaishi. 58:637-51.

Kawamura, A. 1982. Food habits and prey distributions of three rorqual species in the North Pacific. Sci. Rep. Whales Res. Inst., 34:59-91.

- Kondo, K. 1969. Ecological studies of life pattern of the Japanese anchovy, *Engraulis japonicus* (HOUTTUYN). *Bulletin Tokai Region Fishery Research Laboratory*, 60:29-81.
- Konishi, K. and Tamura, T. 2007. Occurrence of the minimal armhook squids *Berryteuthis anonychus* (Cephalopoda: Gonatidae) in the stomachs of common minke whales *Balaenoptera acutorostrata* in the western North Pacific. *Fisheries Science* 73:1208-10.
- Konishi, K. Isoda, T. and Tamura, T. Konishi, K. Isoda, T. and Tamura, T. 2016. Decadal change of feeding ecology in sei, Bryde's and common minke whales in the offshore of the Western North Pacific. Paper SC/F16/JR23 presented to the JARPNII special permit expert panel review workshop, Tokyo, February 2016 (unpublished). **pp.
- Kubodera, T. and Furuhashi, M. 1987. Inaiyoubutu tyuuno ikarui oyobi hadakaiwasikagyorui no syusateinikannsuru manyuaru [Guide to the identification of lantern fishes and cephalopods in the stomach contents]. Appendix document of the report on the modeling of ecosystem in northern North Pacific. Fisheries Agency of Japan, 65 pp. [In Japanese].
- Leaper, R. and Lavigne, D. 2007. How much do large whale eat? J. Cetacean Res. Manege. 9(3):179-88.
- Lindstrøm, U., Fujise, Y., Haug, T. and Tamura, T. 1998. Feeding habits of western North Pacific minke whales, Balaenoptera acutorostrata, as observed in July–September 1996. *Rep. int. Whal. Commn*, 48:463-9.
- Lockyer, C. 1981a. Estimation of the energy costs of growth, maintenance and reproduction in the female minke whale, (*Balaenoptera acutorostrata*), from the southern hemisphere. *Rep. int. Whal. Commn* 31: 337-43.
- Lockyer, C. 1981b. Growth and energy budgets of large baleen whales from the Southern Hemisphere. FAO Fish. Ser. (5) [Mammals in the Sea] 3:379-487.
- Masuda, H., Amaoka, K., Araga, C., Uyeno, T. and Yoshino, T. (eds.) 1988. The fishes of the Japanese archipelago. Second edition. Tokai Univirsity Press, Tokyo, Japan, 378 pp.
- Morrow, J. E. 1979. Preliminary keys to otoliths of some adult fishes of the Gulf of Alaska, Bering Sea, and Beaufort Sea. NOAA Technical Report NMFS circular, 420: 32 pp.
- Nemoto, T. 1959. Food of baleen whales with reference to whale movements. Sci. Rep. Whales Res. Inst. 14: 149-290.
- Nemoto, T., 1962. Food of baleen whales. Geiken Sosho, 4: 136pp. (In Japanese).
- Nemoto, T. and Kawamura, A. 1977. Characteristics of food habits and distribution of baleen whales with special reference to the abundance of North Pacific sei and Bryde's whales. *Rep. Int. Whal.Commn Special issue* 1:80-7.
- Ohe, F. 1984. Otoliths of the coastal fishes along Japanese Islands and of fishes of adjacent seas. *Report of Bullten The senior High School attached to Aichi University of Education*, 11: 183-220.
- Olsen, M. A., Nordøy, E. S., Blix, A. S. and Mathiesen, S. D. 1994. Functional anatomy of the gastrointestinal system of Northeastern Atlantic minke whales (*Balaenoptera acutorostrata*). Journal of Zoology, London, 234: 55-74.

- Perez, M.A., McAlister, W.B. and Mooney, E.E. 1990. Estimated feeding rate relationship for marine mammals based on captive animal data. NOAA Tech. Memo., NMFS F/NWC-184. 30pp.
- Sigurjónsson, J. and Víkingsson, G.A. 1997 Seasonal abundance of and estimated prey consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci. 22: 271-87.
- Tamura, T. 1998. The study of feeding ecology of minke whales in the Northwest Pacific and the Antarctic. D. C. Thesis. Hokkaido University. 125pp. [In Japanese].
- Tamura, T., Fujise, Y. and Shimazaki, K. 1998. Diet of minke whales *Balaenoptera acutorostrata* in the Northwestern part of the North Pacific in summer, 1994 and 1995. *Fisheries Science* 64(1): 71-6.
- Tamura, T and Fujise, Y.2002. Geographical and seasonal changes of prey species of minke whale in the Northwestern Pacific. *ICES Journal of Marine Science*. 59: 516-28.
- Tamura, T., Konishi, K., Goto, M., Bando, T., Kishiro, T., Yoshida, H., Okamoto, R. and Kato, H. 2009a. Prey consumption and feeding habits of common minke whales in coastal areas off Sanriku and Kushiro. Paper SC/J09/JR9 presented to the JARPN II Review Workshop, Tokyo, January 2009 (unpublished). 18pp.
- Tamura, T., Konishi, K., Isoda, T., Okamoto, R. and Bando, T. 2009b. Prey consumption and feeding habits of common minke, sei and Bryde's whales in the western North Pacific. Paper SC/J09/JR16 presented to the JARPN II Review Workshop, Tokyo, January 2009 (unpublished). 36pp.
- Tamura, T., Konishi, K., Isoda, T., Okamoto, R., Bando, T., and Hakamada, T. 2009c. Some examinations of uncertainties in the prey consumption estimates of common minke, sei and Bryde's whales in the western North Pacific. Paper SC/61/JR2 presented to the IWC Scientific Committee, May 2002 (unpublished). 24pp.
- Tamura, T., Kishiro, T., Yoshida, H., Konishi, K., Yasunaga, G., Bando, T., Saeki, M., Onodera, K., Mitsuhashi, M., Yamashita, Y., Funamoto, T. and Kato, H. 2016. Updated prey consumption by common minke whales and interaction with fisheries in coastal areas of the Pacific side of Japan. Paper SC/F16/JR17 presented to the JARPNII special permit expert panel review workshop, Tokyo, February 2016 (unpublished). **pp.

Year	Minke	Bryde's	Sei
1994	21	-	-
1995	100	-	-
1996	77	-	-
1997	100	-	-
1998	100	-	-
1999	100	-	-
2000	40	43	-
2001	100	50	-
2002	100	50	39
2003	100	50	50
2004	100	50	100
2005	100	50	100
2006	100	50	100
2007	100	50	100
2008	59	50	100
2009	43	50	100
2010	14	50	100
2011	49	50	95
2012	74	34	100
2013	3	28	100
2014	0	25	90
Total	1,480	680	1,174

Table 1. Numbers of whales sampled.

Table 2. Body weight (kg) of each whale species sampled in each season.

	IM	IF	MM	MF
Early (N)	38	19	193	14
Average	2,317.2	2,178.9	4,557.1	5,736.1
S.D.	679.2	952.1	595.7	1,104.9
Max	4,210.0	4,050.0	7,109.8	7,500.0
Min	1,300.0	1,050.0	2,950.0	3,650.0
Late (N)	29	7	193	37
Average	3,154.3	3,171.8	4,904.8	6,522.2
S.D.	1,026.9	1,436.2	588.6	786.5
Max	5,154.7	4,500.0	7,050.0	8,054.7
Min	1,300.0	1,200.0	3,300.0	4,650.0

5	· · · ·			(<i>U</i>)
	IM	IF	MM	MF
Early (N)	35	47	33	89
Average	9,051.7	8,567.7	15,282.3	17,618.8
S.D.	2,699.4	2,795.0	1,865.0	3,086.9
Max	15,200.0	14,559.8	18,959.8	24,874.5
Min	4,000.0	2,800.0	12,004.7	11,096.6
Late (N)	86	64	125	172
Average	9,961.3	10,268.2	15,432.1	17,849.1
S.D.	2,500.7	2,889.9	2,075.2	2,557.7
Max	15,454.7	16,300.0	21,404.0	24,450.0
Min	3,800.0	3,350.0	11,300.0	12,140.0

Common minke whales (Coastal)

Sei whales (2002-2014)

(kg)

Bryde's whales (2000-2014)

(kg)

	IM	IF	MM	MF
Sanriku (N)	151	233	52	47
Average	1,776.0	1,924.1	4,125.2	5,118.7
S.D.	664.0	697.0	576.8	1,207.0
Max	3,572.0	4,390.0	5,499.6	8,352.0
Min	600.0	539.4	2,570.0	1,289.2
Kushiro (N)	205	184	166	27
Average	2,053.2	1,971.1	4,784.1	6,023.3
S.D.	806.1	806.9	695.8	1,042.5
Max	4,440.2	4,879.4	6,302.5	8,225.8
Min	662.1	659.0	2,999.2	4,302.0

IM	IF	MM	MF
60	56	149	189
13,716.2	15,831.4	19,226.7	24,590.8
2,633.3	2,651.3	2,193.9	3,715.0
18,304.7	21,344.2	24,457.0	35,001.1
7,450.0	9,750.0	13,654.7	17,009.8
88	75	216	251
14,095.4	15,984.2	20,531.8	25,249.4
3,235.8	3,736.6	2,131.1	4,003.9
19,954.7	23,918.5	26,234.7	34,564.7
4,250.0	6,300.0	15,264.5	16,514.7
	60 13,716.2 2,633.3 18,304.7 7,450.0 88 14,095.4 3,235.8 19,954.7	60 56 13,716.2 15,831.4 2,633.3 2,651.3 18,304.7 21,344.2 7,450.0 9,750.0 88 75 14,095.4 15,984.2 3,235.8 3,736.6 19,954.7 23,918.5	60 56 149 13,716.2 15,831.4 19,226.7 2,633.3 2,651.3 2,193.9 18,304.7 21,344.2 24,457.0 7,450.0 9,750.0 13,654.7 88 75 216 14,095.4 15,984.2 20,531.8 3,235.8 3,736.6 2,131.1 19,954.7 23,918.5 26,234.7

(kg)

Table 3. Results of caloric value of dominant prey species in western North Pacific.

Common minke and se	ei whales				Bryde's whales				
Species	Season	Analyzed	Energy conten	ts (KJ/kg)	Species	Season	Analyzed	Energy conten	ts (KJ/kg)
		Number	Avegage	S.D			Number	Avegage	S.D
Copepods	Early	2	2,738	266	Krill	Early	1	3,051	-
	Late	4	2,885	699		Late	3	3,429	616
Krill	Early	3	3,929	1,235	Japanese anchovy	Early	1	3,389	-
	Late	4	3,177	396		Late	5	4,039	945
Japanese anchovy	Early	3	7,094	716	Japanese sardine	Early	0	-	-
	Late	3	6,134	1,748		Late	1	5,267	-
Japanese sardine	Early	2	9,907	4,847	Chub mackerel	Early	1*	6,479	-
•	Late	1	5,559	-		Late	2	4,765	59
Pacific saury	Early	4	8,217	3,072	Oceanic lightfish	All	-	8,580	-
xome buary	Late	4	10,057	3,916					
					Squids	Early	1	6,646	-
Chub mackerel	Early	1	6,479	-		Late	2	5,628	1,391
	Late	3	8,555	4,613					
Walleye pollock	Early	3	6,232	714					
	Late	2	5,918	388					
Oceanic lightfish	All	-	8,580	-					
Sand lance	Early	4	4,663	2,098					
Squids	Early	1	6,646	-					
	Late	2	5,628	1,391					

Table 4. Prey composition (W %) of each whale species sampled.

Common minke whales (1996-2014: excluding sub area 11)

Sub area 7

Period	Number	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Pollock	Squids	Others
Early										
2000-07	187	0.00	13.51	63.76	0.00	0.00	0.00	22.73	0.00	0.00
2008-14	78	0.00	11.35	42.81	0.66	0.00	0.27	44.92	0.00	0.00
1996-2014	375	0.00	12.29	58.25	0.14	0.00	0.12	29.09	0.00	0.10
Late				••••••						
2000-07	125	0.00	8.83	31.14	0.00	24.06	0.84	19.56	15.57	0.00
2008-14	49	0.00	13.21	79.45	0.00	0.00	0.00	7.35	0.00	0.00
1996-2014	206	0.00	16.37	34.33	0.00	21.44	0.51	16.11	11.24	0.00

Sub areas 8 and 9

Period	Number	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Pollock	Squids	Others
Early										
2000-07			4.56	56.73	0.00	34.53	1.24	0.00	0.00	0.16
2008-14	17	18.90	51.35	18.03	0.00	0.00	11.72	0.00	0.00	0.00
1996-2014	247	3.28	4.18	73.68	0.00	17.77	1.01	0.00	0.00	0.08
Late										
2000-07	281	0.00	3.31	16.84	0.00	69.54	0.00	0.00	0.00	10.32
2008-14	85	0.12	4.82	24.06	0.00	68.47	0.03	0.00	0.00	2.50
1996-2014	413	0.03	3.78	16.71	0.00	71.82	0.01	0.00	0.00	7.65

All areas

Period	Number	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Pollock	Squids	Others
Early										
2000-07	306		9.03	60.25	0.00	17.26	0.62	11.36	0.00	0.08
2008-14	95	9.45	31.35	30.42	0.33	0.00	6.00	22.46	0.00	0.00
1996-2014	622	1.64	8.23	65.97	0.07	8.88	0.56	14.55	0.00	0.09
Late										
2000-07	406	0.00	6.07	23.99	0.00	46.80	0.42	9.78	7.79	5.16
2008-14	134	0.06	9.01	51.76	0.00	34.23	0.01	3.67	0.00	1.25
1996-2014	619	0.01	10.08	25.52	0.00	46.63	0.26	8.06	5.62	3.83
Year (for EwE)										
Average	1,241	0.66	9.34	41.70	0.03	31.53	0.38	10.65	3.37	2.33

Bryde's whales (2000-2014)

Period	Number	Krill	Anchovy	Sardine	Mackerel	oceanic lightfish	Squids
Early							
2000-07	121	42.51	48.41	0.00	9.08	0.005	0.0002
2008-14	49	6.95	83.94	0.00	3.49	5.62	0.00
2000-14	170	33.01	58.13	0.00	7.35	1.51	0.0002
Late							
2000-07	204	11.31	87.65	0.00	0.41	0.63	0.00
2008-14	182	27.64	69.56	0.71	2.04	0.04	0.00
2000-14	386	14.90	83.47	0.23	0.95	0.44	0.00
Year (for EwE)							
Average	556	22.13	73.43	0.14	3.43	0.87	0.0001

Sei whales (2002-2014)

Period	Number	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Squids	Others
Early									
2002-07	207	19.11	18.55	46.18	0.00	1.07	15.10	0.00	0.00
2008-14	322	53.63	9.60	14.70	3.52	3.00	15.39	0.005	0.15
2002-14	529	37.71	13.86	28.94	1.88	2.25	15.28	0.003	0.08
Late									
2002-07	282	10.73	27.59	55.43	0.00	4.63	1.62	0.002	0.00
2008-14	363	22.42	6.38	46.16	0.00	6.61	14.52	3.92	0.00
2002-14	645	16.47	17.36	50.96	0.00	5.60	7.90	1.71	0.00
Year (for EwE)									
Average	1,174	25.05	16.57	43.46	0.00	4.34	9.51	1.04	0.03

Table 5. Energy contents (KJ/kg) of prey consumed by each whale species based on Tables 3 and 4.

Common minke whales (1996-2014)

Species	Krill	Anchovy	Sardine	Saury	Mackerel	Pollock	Squids		1996-2014	2000-07	2008-14
Number	N=3	N=3	N=2	N=4	N=1	N=3	N=1				
Low	2,926	6,276	6,479	4,849	6,479	5,518	6,646		5,637	5,651	5,558
High	5,309	7,608	13,334	11,548	6,479	6,945	6,646		7,131	7,147	7,085
Average	3,929	7,094	9,907	8,217	6,479	6,232	6,646		6,450	6,471	6,366
Late-Area 7											
Species	Krill	Anchovy	Sardine	Saury	Mackerel	Pollock	Squids		1996-2014	2000-07	2008-14
Number	N=4	N=3	N=1	N=4	N=3	N=2	N=2				
Low	2,720	4,268	5,559	5,272	5,309	5,643	4,644		4,499	4,696	4,165
High	3,678	7,733	5,559	13,376	13,836	6,192	6,611		7,936	8,289	7,085
Average	3,177	6,134	5,559	10,057	8,555	5,918	5,628		6,412	6,700	5,728
Early-Areas	8+9										
Species	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Others		1996-2014	2000-07	2008-14
Number	N=2	N=3	N=3	N=2	N=4	N=1	N=1				
Low	2,550	2,926	6,276	6,479	4,849	6,479	8,580		5,757	5,533	3,875
High	2,926	5,309	7,608	13,334	11,548	6,479	8,580		8,041	8,721	5,410
Average	2,738	3,929	7,000	9,907	8,217	6,479	8,580		7,007	7,211	4,574
_											
Late-Areas 8 Species	Copepods	Krill	Anchovy	Sardine	Saury	Mackerel	Others		1996-2014	2000-07	2008-14
Number	N=4	N=4	N=3	N=1	N=4	N=3	N=1		1770-2014	2000-07	2000-14
Low	2,174	2,720	4,268	5,559	5,272	5,309	8,580		5,260	5,360	4,986
High	3,849	3,678	7,733	5,559	13,376	13,836	8,580 8,580		11,697	11,611	11,420
Average	2,885	3,078	6,134	5,559	10,057	8,555	8,580		9,026	9,017	8,736
Bryde's what	les (2000-2014)										
5											
Species	Krill	Anchovy	Sardine	Mackerel	Oceanic lightfish	Squids			2000-14	2000-07	2008-14
	Krill N=1	Anchovy N=1	Sardine N=0	Mackerel N=1*	Oceanic lightfish N=1	Squids N=1*			2000-14	2000-07	2008-14
Species		•			-				2000-14 3,583	2000-07 3,526	
Species Number	N=1	N=1		N=1*	N=1	N=1*					3,765
Species Number Low	N=1 3,051	N=1 3,389		N=1* 6,479	N=1 8,580	N=1* 6,646			3,583	3,526	3,765 3,765
Species Number Low High	N=1 3,051 3,051	N=1 3,389 3,389		N=1* 6,479 6,479	N=1 8,580 8,580	N=1* 6,646 6,646			3,583 3,583	3,526 3,526	2008-14 3,765 3,765 3,765
Species Number Low High Average	N=1 3,051 3,051	N=1 3,389 3,389		N=1* 6,479 6,479 6,479	N=1 8,580 8,580	N=1* 6,646 6,646			3,583 3,583	3,526 3,526	3,765 3,765
Species Number Low High Average Late	N=1 3,051 3,051 3,051	N=1 3,389 3,389 3,389 3,389	N=0	N=1* 6,479 6,479 6,479	N=1 8,580 8,580 8,580	N=1* 6,646 6,646 6,646			3,583 3,583 3,583	3,526 3,526 3,526	3,765 3,765 3,765
Species Number Low High Average Late Species	N=1 3,051 3,051 3,051 Krill	N=1 3,389 3,389 3,389 3,389 Anchovy	N=0 Sardine	N=1* 6,479 6,479 6,479 Mackerel	N=1 8,580 8,580 8,580 Oceanic lightfish	N=1* 6,646 6,646 6,646 Squids			3,583 3,583 3,583	3,526 3,526 3,526	3,765 3,765 3,765 2008-14
Species Number Low High Average Late Species Number	N=1 3,051 3,051 3,051 Krill N=3	N=1 3,389 3,389 3,389 3,389 Anchovy N=5	N=0 Sardine N=1	N=1* 6,479 6,479 6,479 Mackerel N=2	N=1 8,580 8,580 8,580 Oceanic lightfish N=1	N=1* 6,646 6,646 6,646 Squids			3,583 3,583 3,583 2000-14	3,526 3,526 3,526 2000-07	3,765 3,765 3,765 2008-14 2,906
Species Number Low High Average Late Species Number Low	N=1 3,051 3,051 3,051 Krill N=3 2,759	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884	N=0 Sardine N=1 5,267	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580	N=1* 6,646 6,646 6,646 Squids			3,583 3,583 3,583 2000-14 2,913	3,526 3,526 3,526 2000-07 3,400	3,765 3,765 3,765
Species Number Low High Average Late Species Number Low High	N=1 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884 5,523	N=0 Sardine N=1 5,267 5,267	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580	N=1* 6,646 6,646 6,646 Squids			3,583 3,583 3,583 2000-14 2,913 5,297	3,526 3,526 3,526 2000-07 3,400 5,850	3,765 3,765 3,765 2008-14 2,906 5,078
Species Number Low High Average Late Species Number Low High Average Sei whales (2)	N=1 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884 5,523	N=0 Sardine N=1 5,267 5,267	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580	N=1* 6,646 6,646 6,646 Squids	Squids	Others	3,583 3,583 3,583 2000-14 2,913 5,297	3,526 3,526 3,526 2000-07 3,400 5,850	3,765 3,765 3,765 2008-14 2,906 5,078
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early	N=1 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014)	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039	N=0 Sardine N=1 5,267 5,267 5,267	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580	N=1* 6,646 6,646 6,646 Squids N=0	Squids N=1	Others	3,583 3,583 3,583 2000-14 2,913 5,297 3,977	3,526 3,526 3,526 2000-07 3,400 5,850 4,488	3,765 3,765 3,765 2008-14 2,906 5,078 3,895
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species	N=1 3,051 3,051 3,051 N=3 2,759 3,971 3,429 2002-2014) Copepods	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill	N=0 Sardine N=1 5,267 5,267 5,267 5,267	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580	N=1* 6,646 6,646 6,646 Squids N=0 Mackerel			3,583 3,583 3,583 2000-14 2,913 5,297 3,977	3,526 3,526 3,526 2000-07 3,400 5,850 4,488	3,765 3,765 3,765 2008-14 2,906 5,078 3,895
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number	N=1 3,051 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3	N=0 Sardine N=1 5,267 5,267 5,267 5,267 4.nchovy N=3	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine N=2	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580	N=1* 6,646 6,646 5quids N=0 Mackerel N=1	N=1	N=1	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 2002-14	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low	N=1 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926	N=0 Sardine N=1 5,267 5,267 5,267 5,267 Anchovy N=3 6,276	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine N=2 6,479	N=1 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,580	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479	N=1 6,646	N=1 8,580	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 2002-14 2002-14 4,411	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 4,071
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average	N=1 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 8,276 Anchovy N=3 6,276 7,608	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine N=2 6,479 13,334	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,580 8,580 8,580 8,580 11,548	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479	N=1 6,646 6,646	N=1 8,580 8,580	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 3,977 2002-14 4,411 5,549	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912 6,048	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 2008-14 4,071 5,139
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average Late	N=1 3,051 3,051 3,051 3,051 3,051 Xrill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926 2,738	N=1 3,389 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309 3,929	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 5,267 0,276 8,276 0,276 7,608 7,094	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine N=2 6,479 13,334 9,907	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,580 8,580 8,580 11,548 8,217	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479 6,479	N=1 6,646 6,646 6,646	N=1 8,580 8,580 8,580	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 3,977 2002-14 2002-14 4,411 5,549 4,998	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 2002-07 4,912 6,048 5,515	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 2008-14 4,071 5,139 4,610
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average Low High Average Late Species	N=1 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926 2,738 Copepods	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309 3,929 Krill	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 8,267 6,276 7,608 7,094 Anchovy	N=1* 6,479 6,479 Mackerel N=2 4,723 4,723 4,807 4,765 Sardine N=2 6,479 13,334 9,907 Sardine	N=1 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,217 N=4 4,849 11,548 8,217	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479 6,479	N=1 6,646 6,646 6,646 Squids	N=1 8,580 8,580 8,580 Others	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 3,977 2002-14 4,411 5,549	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912 6,048	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 2008-14 4,071 5,139
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average Low High Average Low High Average Late Species Number	N=1 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926 2,738 Copepods N=4	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309 3,929 Krill N=4	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 6,276 7,608 7,608 7,608 7,094 Anchovy N=3	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 8,479 13,334 9,907 3,334 9,907 Sardine N=1	N=1 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,580 11,548 8,217 11,548 8,217 Saury N=4	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479 6,479 6,479	N=1 6,646 6,646 6,646 Squids N=2	N=1 8,580 8,580 8,580 Others N=1	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 2002-14 4,411 5,549 4,998 2002-14	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912 6,048 5,515 2002-07	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 4,071 5,139 4,610 2008-14
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average Low High Average Late Species Number Low High Average Late Species Number Low	N=1 3,051 3,051 3,051 3,051 3,051 Xrill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926 2,738 Copepods N=4 2,174	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309 3,929 Krill N=4 2,720	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 0,267 0,267 0,267 0,267 0,268 0,268 0,268 0,268	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 Sardine N=2 6,479 13,334 9,907 Sardine N=1 Sardine	N=1 8,580 8,580 8,580 0ceanic lightfish N=1 8,580 8,58	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479 6,479 6,479 6,479	N=1 6,646 6,646 6,646 Squids N=2 4,644	N=1 8,580 8,580 8,580 Others N=1 8,580	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 2002-14 4,411 5,549 4,998 2002-14 2002-14	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912 6,048 5,515 2002-07 2002-07	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 4,071 5,139 4,610 2008-14
Species Number Low High Average Late Species Number Low High Average Sei whales (2 Early Species Number Low High Average Low High Average Low High Average Late Species Number	N=1 3,051 3,051 3,051 3,051 Krill N=3 2,759 3,971 3,429 2002-2014) Copepods N=2 2,550 2,926 2,738 Copepods N=4	N=1 3,389 3,389 3,389 Anchovy N=5 2,884 5,523 4,039 Krill N=3 2,926 5,309 3,929 Krill N=4	N=0 Sardine N=1 5,267 5,267 5,267 5,267 5,267 6,276 7,608 7,608 7,608 7,094 Anchovy N=3	N=1* 6,479 6,479 6,479 Mackerel N=2 4,723 4,807 4,765 8,479 13,334 9,907 3,334 9,907 Sardine N=1	N=1 8,580 8,580 0ceanic lightfish N=1 8,580 8,580 8,580 8,580 8,580 8,580 11,548 8,217 11,548 8,217 Saury N=4	N=1* 6,646 6,646 Squids N=0 Mackerel N=1 6,479 6,479 6,479 6,479	N=1 6,646 6,646 6,646 Squids N=2	N=1 8,580 8,580 8,580 Others N=1	3,583 3,583 3,583 2000-14 2,913 5,297 3,977 2002-14 4,411 5,549 4,998 2002-14	3,526 3,526 3,526 2000-07 3,400 5,850 4,488 2002-07 4,912 6,048 5,515 2002-07	3,765 3,765 3,765 2008-14 2,906 5,078 3,895 2008-14 4,071 5,139 4,610 2008-14

Hindex	P (Percentage of annual prey consumption)			
(Residence days)	70	80	90	
120	2.13	2.43	2.74	
150	1.70	1.95	2.19	
180	1.42	1.62	1.83	

Table 6. The values of the rate of *H* index for the daily consumption.

Table 7. The composition of maturity stages of each whale species sampled.

(IM: Immature male, MM: Mature male, IF: Immature female, MF: Mature female, UM: Unidentified maturity)

Common min	ke w	hales
------------	------	-------

Area 7						
Period	Numbers	IM	MM	IF	MF	UM
Early						
2000-07	192	23.4	62.0	7.3	4.2	3.1
2008-14	86	26.7	46.5	15.1	4.7	7.0
1996-14	386	22.8	60.4	9.3	4.4	3.1
Late						
2000-07	131	19.1	59.5	9.9	8.4	3.1
2008-14	51	21.6	56.9	5.9	13.7	2.0
1996-14	213	19.2	61.0	7.5	9.9	2.3

Bryde's whales

Sei whales

Period	Numbers	IM	MM	IF	MF
Early					
2000-07	146	16.4	16.4	21.9	45.2
2008-14	59	19.0	15.5	25.9	39.7
2000-14	205	17.2	16.2	23.0	43.6
Late					
2000-07	247	23.9	23.9	15.8	36.4
2008-14	228	12.9	31.1	13.8	42.2
2000-14	475	18.6	27.3	14.8	39.2

Common minke whales

Areas 8+9						
Period	Numbers	IM	MM	IF	MF	UM
Early						
2000-07	128	12.5	71.1	6.3	4.7	5.5
2008-14	20	20.0	55.0	10.0	5.0	10.0
1996-14	259	14.3	69.5	7.3	5.4	3.5
Late						
2000-07	289	6.6	78.9	0.3	6.2	8.0
2008-14	85	5.9	68.2	2.4	11.8	11.8
1996-14	421	6.4	78.1	0.7	6.9	7.8

Period	Numbers	IM	MM	IF	MF
Early					
2002-07	207	15.5	30.4	13.0	41.1
2008-14	322	11.5	33.2	12.1	43.2
2002-14	529	13.0	32.1	12.5	42.3
Late					
2002-07	282	13.8	36.9	13.8	35.5
2008-14	363	13.8	32.8	10.5	43.0
2002-14	645	13.8	34.6	11.9	39.7

Average

Period	Numbers	IM	MM	IF	MF	UM
Early						
2000-07	320	18.0	66.5	6.8	4.4	4.3
2008-14	106	23.4	50.8	12.6	4.8	8.5
1996-14	645	18.5	64.9	8.3	4.9	3.3
Late						
2000-07	420	12.8	69.2	5.1	7.3	5.5
2008-14	136	13.7	62.5	4.1	12.7	6.9
1996-14	634	12.8	69.6	4.1	8.4	5.1

Common minke whales

Period	Numbers	CV	95% CI LL	95% CI UL
Early				
2000-2007	6,609	0.691	1,942	22,488
2008-2014	3,629	0.586	1,252	10,523
Late				
2000-2007	2,879	0.523	1,098	7,547
2008-2014	3,080	0.677	924	10,266
Bryde's whales				
Period	Numbers	CV	95% CI LL	95% CI UL
Early				
2000-2007	1,559	0.860	363	6,702
2008-2014	2,957	0.394	1,404	6,226
Late				
2000-2007	9,344	0.316	5,104	17,106
2008-2014	13,306	0.569	4,712	37,570
Sei whales				
Period	Numbers	CV	95% CI LL	95% CI UL
Early				
2002-2007	7,646	0.272	4,529	12,908
2008-2014	4,734	0.177	3,355	6,679
Late				
2002-2007	5,370	0.300	3,021	9,547
2008-2014	5,086	0.378	2,485	10,410

Table 9. Abundance and catch information of each prey species.

Japanese anchovy

Pacific saury	
---------------	--

Year	Abundance	Catch
2000	N.D.	213.0
2001	N.D.	198.0
2002	N.D.	334.0
2003	N.D.	408.0
2004	2,840.0	402.0
2005	1,520.0	238.0
2006	3,360.0	303.0
2007	2,760.0	242.0
2008	N.D.	209.0
2009	N.D.	241.0
2010	N.D.	248.0
2011	N.D.	160.0
2012	N.D.	155.0
2013	N.D.	155.0

Year	Abundance	Catch
2000	N.D.	281.9
2001	N.D.	367.4
2002	N.D.	328.6
2003	2,490.5	440.3
2004	2,634.5	353.8
2005	2,355.5	469.1
2006	2,207.0	389.6
2007	1,135.5	519.3
2008	2,435.0	606.0
2009	2,097.0	469.7
2010	690.5	415.7
2011	1,248.5	448.7
2012	817.5	455.4
2013	1,008.0	404.0

Mackerels

Year	Abundance	Catch
2000	243.0	93.7
2001	152.0	55.8
2002	210.0	48.2
2003	230.0	76.7
2004	743.0	180.7
2005	868.0	226.5
2006	786.0	239.0
2007	614.0	182.1
2008	550.0	173.4
2009	649.0	127.2
2010	862.0	123.3
2011	106.0	103.0
2012	1030.0	122.0
2013	1360.0	220.0

Table 10. Prey species of each whale species sampled in JARPNII.

Common minke whale

	Species			Species	
Main prey			Main prey		
Copepods	Calanus sp.		Copepods	Neocalanus cristatus	
Krill	Euphausia pacifica			N. plumchrus	
	Thysanoessa gregaria			Calanus sp.	
Pisces	Engraulis japonicus	Japanese anchovy	Krill	Euphausia pacifica	
	Sardinops melanostictus	Japanese sardine		E. similis	
	Cololabis saira	Pacific saury		Thysanoessa gregaria	
	Scomber japonicus	Chub mackerel	Pisces	Engraulis japonicus	Japanese anchovy
	Gadus chalcogrammus	Walleye pollocke		Sardinops melanostictus	Japanese sardine
	Brama japonica	Japanese pomfret		Cololabis saira	Pacific saury
	Oncorhynchus gorbuscha	Pink salmon		Scomber japonicus	Chub mackerel
	O. keta	Chum salmon		S. australasicus	Spotted mackerel
	Pleurogrammus monopterygius	Atka mackerel			
	Ammodytes personatus	Sand lance	Miner prey		
Squids	Todarodes pacificus	Japanese common squid	Pisces	Sardinops melanostictus	Japanese sardine
	Berryteuthis anonychus	Minimal armhook squid	Squids	Todarodes pacificus	Japanese common squid
Miner prey					
		B 11 911 11			

Duckbill barracudina Pisces Paralepis atlantica

Bryde's whale

	Species	
Main prey		
Krill	Euphausia pacifica	
	E. similis	
	E. gibboides	
	Thysanoessa gregaria	
	Nematoscelis difficilis	
Pisces	Engraulis japonicus	Japanese anchovy
	Scomber japonicus	Chub mackerel
	S. australasicus	Spotted mackerel
	Vinciguerria nimbaria	Oceanic lightfish
	Auxis rochei	
Squids	Todarodes pacificus	Japanese common squid
Miner prey		
Pisces	Arothron firmamentum	Starry toado
	Decapterus russelli	Russell's scad
	Diaphus theta	Lantern fish
	Tarletonbeania taylori	Lantern fish
	Starry toado	Arothron firmamentum
	Nemichthys scolopaceus	Snipe eel
	Lestidiops jayakari	

Table 11. The average and maximum weight and the ratio of stomach contents weight to body weight, expressed as a percentage (RSC) of fresh or lightly digested stomach contents (freshness category F and fff).

Common minke whale

Sex	Maturity	Number	Average	S.D.	Maximum	95% C.I. Lower	95% C.I. Upper
			weight (kg)		weight (kg)		
Male	Immature	61	27.11	22.30	97.00	21.40	32.80
		,	(1.02%)		(3.53%)	(0.80%)	(1.23%)
	Mature	428	48.80	35.90	221.40	45.30	52.20
		,	(1.01%)		(4.09%)	(0.94%)	(1.07%)
Female	Immature	43	34.90	29.40	115.20	25.90	44.00
		,	(0.94%)		(2.45%)	(0.74%)	(1.14%)
	Mature	44	62.10	42.00	197.60	49.40	74.90
		,	(1.00%)		(4.03%)	(0.77%)	(1.23%)

Bryde's whale

Sex	Maturity	Number	Average	S.D.	Maximum	95% C.I. Lower	95% C.I. Upper
			weight (kg)		weight (kg)		
Male	Immature	57	106.80	110.90	461.30	77.30	136.20
		I	(1.10%)		(4.32%)	(0.81%)	(1.40%)
	Mature	63	118.70	141.40	448.80	83.10	154.30
			(0.77%)		(3.03%)	(0.54%)	(1.00%)
Female	Immature	51	76.40	82.10	288.30	53.30	99.50
		I	(0.80%)		(3.25%)	(0.56%)	(1.04%)
	Mature	100	157.60	172.50	715.30	123.40	191.80
		I	(0.86%)		(3.69%)	(0.67%)	(1.04%)

Sei whale

Sex	Maturity	Number	Average	S.D.	Maximum	95% C.I. Lower	95% C.I. Upper
			weight (kg)		weight (kg)		
Male	Immature	72	74.20	91.50	395.10	52.50	95.80
		I	(0.53%)		(3.03%)	(0.37%)	(0.69%)
	Mature	194	88.40	128.10	655.50	70.20	106.60
		I	(0.45%)		(3.45%)	(0.35%)	(0.54%)
Female	Immature	71	69.20	98.70	595.50	45.60	92.70
		I	(0.43%)		(3.08%)	(0.29%)	(0.56%)
	Mature	231	145.30	194.90	1,270.60	120.00	170.60
		I	(0.59%)		(4.59%)	(0.49%)	(0.69%)

Table 12. Daily prey consumption estimates (kg) per capita of each sex and reproductive status of each whale species in each model.

Eq-2					Eq-3-1					Eq-4					Combined				
Common minke whales					Common minke whal	es				Common minke what	es				Common minke what	les			
Maturity stage Con	sumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL
Early (May and June)					Early (May and June)				Early (May and June)				Early (May and Jun	e)			
Immature male	53	0.15	42	74	Immature male	108	0.15	85	150	Immature male	98	0.15	76	136	Immature male	86	0.20	56	125
Immature female	52	0.15	40	72	Immature female	103	0.15	81	143	Immature female	93	0.15	72	129	Immature female	83	0.20	54	119
Mature male	76	0.15	60	106	Mature male	184	0.15	143	256	Mature male	162	0.15	127	227	Mature male	141	0.23	84	209
Mature female	86	0.15	67	119	Mature female	220	0.15	171	306	Mature female	193	0.15	151	268	Mature female	166	0.23	99	249
Late (July to September)					Late (July to Septem	per)				Late (July to Septem	per)				Late (July to Septen	lber)			
Immature male	54	0.20	41	87	Immature male	120	0.20	90	191	Immature male	107	0.20	80	170	Immature male	94	0.25	58	154
Immature female	55	0.20	41	87	Immature female	120	0.20	89	193	Immature female	107	0.20	80	174	Immature female	94	0.25	58	155
Mature male	69	0.20	51	111	Mature male	169	0.20	125	270	Mature male	149	0.20	112	239	Mature male	129	0.26	76	212
Mature female	80	0.20	60	129	Mature female	211	0.20	159	343	Mature female	184	0.20	137	295	Mature female	158	0.27	91	265
Bryde's whales					Bryde's whales					Bryde's whales					Bryde's whales				
Maturity stage Con	sumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL
Early (May and June)					Early (May and June)				Early (May and June)				Early (May and Jun	e)			
Immature male	204	0.14	161	273	Immature male	590	0.14	464	792	Immature male	508	0.14	404	679	Immature male	434	0.24	246	637
Immature female	198	0.14	156	265	Immature female	565	0.14	446	755	Immature female	488	0.14	386	647	Immature female	417	0.24	235	614
Mature male	268	0.14	211	359	Mature male	889	0.14	702	1,183	Mature male	753	0.14	596	1,013	Mature male	637	0.26	330	953
Mature female	289	0.14	228	387	Mature female	994	0.14	784	1,327	Mature female	837	0.14	659	1,121	Mature female	707	0.26	373	1,063
Late (July to September)					Late (July to Septem	per)				Late (July to Septem	per)				Late (July to Septen	ber)			
Immature male	193	0.18	139	282	Immature male	412	0.18	412	828	Immature male	491	0.18	352	718	Immature male	419	0.27	221	655
Immature female	196	0.18	142	287	Immature female	586	0.19	417	855	Immature female	502	0.19	357	735	Immature female	428	0.28	225	674
Mature male	243	0.19	173	365	Mature male	806	0.18	582	1,179	Mature male	682	0.19	485	1,000	Mature male	577	0.29	287	918
Mature female	262	0.18	187	381	Mature female	903	0.19	645	1,322	Mature female	760	0.18	543	1,105	Mature female	642	0.29	318	1,014
Sei whales					Sei whales					Sei whales					Sei whales				
Maturity stage Con	sumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL	Maturity stage	Consumption	CV	95% CI LL	95% CI UL
Early (May and June)					Early (May and June					Early (May and June					Early (May and Jun				
Immature male	182	0.15	142	247	Immature male	585	0.15	456	797	Immature male	497	0.15	390	679	Immature male	421	0.15	328	577
Immature female	196	0.15	152	269	Immature female	654	0.15	512	898	Immature female	553	0.15	433	754	Immature female	468	0.15	364	640
Mature male	217	0.15	169	296	Mature male	762	0.15	598	1,042	Mature male	640	0.15	502	874	Mature male	539	0.15	420	736
Mature female	247	0.14	192	336	Mature female	923	0.15	720	1,264	Mature female	770	0.15	602	1,048	Mature female	647	0.15	503	884
Late (July to September)					Late (July to Septem	per)				Late (July to Septemi	per)				Late (July to Septen	lber)			
Immature male	170	0.19	124	259	Immature male	553	0.19	402	836	Immature male	469	0.19	343	716	Immature male	397	0.19	288	600
Immature female	182	0.19	132	274	Immature female	610	0.19	442	925	Immature female	516	0.19	373	780	Immature female	436	0.19	318	663
Mature male	208	0.19	152	313	Mature male	742	0.19	543	1,129	Mature male	622	0.19	456	949	Mature male	524	0.19	280	797
				515				515	1,127										

Table 13. Seasonal prey consumption (thousand tons) consumed by whales in each model.

Eq-2					Eq-3-1					Eq-4					Combined				
Common minke v	vhales				Common minke w	hales				Common minke wh	hales				Common minke wh	ales			
Period/Species C	Consumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Cor	sumption	CV	95% CI LL	95% CI UL
2000-2007	45	0.32	33	115	2000-2007	107	0.31	80	270	2000-2007	95	0.32	80	270	2000-2007	82	0.34	55	207
Krill	2	0.33	1	5	Krill	4	0.33	3	11	Krill	4	0.33	3	10	Krill	3	0.36	2	9
Anchovy	19	0.38	12	52	Anchovy	44	0.38	28	124	Anchovy	39	0.38	25	111	Anchovy	34	0.41	20	96
Saury	22	0.29	16	52	Saury	52	0.29	39	125	Saury	46	0.29	34	110	Saury	40	0.32	27	95
2008-2014	38	0.31	29	97	2008-2014	91	0.30	69	233	2008-2014	80	0.31	59	203	2008-2014	70	0.33	47	176
Krill	10	0.35	7	27	Krill	24	0.35	16	62	Krill	22	0.36	14	55	Krill	19	0.39	11	48
Anchovy	8	0.32	6	21	Anchovy	19	0.32	14	50	Anchovy	17	0.32	13	45	Anchovy	15	0.35	10	40
Saury	13	0.45	7	44	Saury	33	0.45	17	107	Saury	29	0.45	16	95	Saury	25	0.50	12	85
Bryde's whales					Bryde's whales	Bryde's whales Bryde's whales								Bryde's whales					
Period/Species C	Consumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Cor	sumption	CV	95% CI LL	95% CI UL
2000-2007	216	0.24	153	398	2000-2007	698	0.25	494	1,296	2000-2007	593	0.25	417	1,092	2000-2007	502	0.30	291	950
Krill	32	0.26	24	67	Krill	103	0.26	78	218	Krill	88	0.26	66	185	Krill	74	0.31	47	158
Anchovy	180	0.25	124	329	Anchovy	581	0.25	397	1,050	Anchovy	493	0.26	333	905	Anchovy	418	0.32	225	783
Sardine	0				Sardine	0				Sardine	0				Sardine	0			
Mackerels	1	0.03	1	1	Mackerels	1	0.08	1	1	Mackerels	1	0.08	1	1	Mackerels	1	0.08	1	1
2008-2014	310	0.35	191	760	2008-2014	990	0.36	600	2,412	2008-2014	842	0.35	521	2,040	2008-2014	714	0.41	371	1,760
Krill	77	0.39	42	200	Krill	244	0.26	136	631	Krill	208	0.39	114	533	Krill	176	0.45	80	462
Anchovy	222	0.35	138	536	Anchovy	709	0.35	449	1,702	Anchovy	603	0.35	377	1,441	Anchovy	511	0.40	273	1,239
Sardine	2	0.40	1	5	Sardine	6	0.41	3	16	Sardine	5	0.41	3	13	Sardine	4	0.46	2	12
Mackerels	2	0.40	1	5	Mackerels	5	0.38	3	13	Mackerels	4	0.38	2	11	Mackerels	4	0.44	2	10
Sei whales					Sei whales					Sei whales					Sei whales				
Period/Species C	Consumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Co	onsumption	CV	95% CI LL	95% CI UL	Period/Species Cor	sumption	CV	95% CI LL	95% CI UL
2002-2007	211	0.18	164	332	2002-2007	754	0.18	581	1,188	2002-2007	632	0.18	485	995	2002-2007	533	0.24	332	868
Copepods	31	0.18	24	49	Copepods	111	0.18	85	174	Copepods	93	0.18	72	145	Copepods	78	0.25	48	128
Krill	49	0.19	37	79	Krill	176	0.19	134	282	Krill	148	0.19	113	236	Krill	124	0.26	75	209
Anchovy	108	0.19	83	170	Anchovy	385	0.19	296	611	Anchovy	323	0.19	248	512	Anchovy	272	0.25	165	452
Saury	6	0.23	4	11	Saury	22	0.23	16	38	Saury	19	0.23	13	32	Saury	16	0.30	8	29
Mackerels	17	0.22	12	28	Mackerels	60	0.22	43	100	Mackerels	50	0.22	36	83	Mackerels	42	0.30	23	75
2008-2014	176	0.21	132	292	2008-2014	626	0.21	467	1,044	2008-2014	525	0.21	392	876	2008-2014	442	0.27	264	764
Copepods	62	0.17	48	93	Copepods	220	0.17	172	330	Copepods	185	0.17	144	275	Copepods	155	0.24	96	243
Krill	13	0.19	10	21	Krill	48	0.19	37	76	Krill	40	0.19	31	63	Krill	34	0.25	21	56
Anchovy	58	0.27	40	110	Anchovy	209	0.26	144	393	Anchovy	175	0.26	120	327	Anchovy	148	0.33	80	286
Saury	9	0.25	6	17	Saury	32	0.25	23	59	Saury	27	0.25	19	49	Saury	23	0.31	13	43
Mackerels	26	0.21	20	43	Mackerels	93	0.20	71	154	Mackerels	78	0.20	59	128	Mackerels	66	0.26	40	112

Table 14. The comparison among the prey consumption of three baleen whale species, the catch of fisheries and the abundance of fishes.

Year	Catch	Abundance	%		Estima	ted prey const	umption by three	baleen whale s	pecies (thousand	l tons)	
				Eq-2	% of biomass	Eq 3-1	% of biomass	Eq 4	% of biomass	Eq combined	% of biomass
2000	213.0	N.D.	-	307.0	-	1,010.0	-	855.0	-	724.0	
2001	198.0	N.D.	-	307.0	-	1,010.0	-	855.0	-	724.0	
2002	334.0	N.D.	-	307.0	-	1,010.0	-	855.0	-	724.0	
2003	408.0	N.D.	-	307.0	-	1,010.0	-	855.0	-	724.0	
2004	402.0	2,840.0	14.2	307.0	10.8	1,010.0	35.6	855.0	30.1	724.0	2
2005	238.0	1,520.0	15.7	307.0	20.2	1,010.0	66.4	855.0	56.3	724.0	4
2006	303.0	3,360.0	9.0	307.0	9.1	1,010.0	30.1	855.0	25.4	724.0	2
2007	242.0	2,760.0	8.8	307.0	11.1	1,010.0	36.6	855.0	31.0	724.0	2
2008	209.0	N.D.	-	288.0	-	937.0	-	795.0	-	674.0	
2009	241.0	N.D.	-	288.0	-	937.0	-	795.0	-	674.0	
2010	248.0	N.D.	-	288.0	-	937.0	-	795.0		674.0	
2010	160.0	N.D.		288.0	-	937.0	-	795.0		674.0	
2011	155.0	N.D.		288.0	-	937.0		795.0		674.0	
2012	155.0	N.D.		288.0		937.0		795.0		674.0	
2015	155.0	11.D.		200.0		751.0		175.0		074.0	
ackerels	~ .					. 1	e 1 a			1	
Year	Catch	Abundance	%	Eq-2	Estima % of biomass	Eq 3-1	umption by three % of biomass	Eq 4	% of biomass	Eq combined	% of biomas
2000	93.7	243.0	38.6	17.8	% 01 010111ass 7.3	61.0	25.1	51.0	21.0	43.0	% 01 01011148
2000	55.8	152.0	36.7	17.8	11.7	61.0	40.1	51.0	33.6	43.0	2
2001	48.2	210.0	22.9	17.8	8.5	61.0	29.0	51.0	24.3	43.0	2
	76.7									43.0	
2003 2004	180.7	230.0	33.3	17.8	7.7	61.0	26.5	51.0	22.2	43.0	
~~~~~~~~~	~~~~~~	743.0	24.3	17.8	2.4	61.0	8.2	51.0	6.9		
2005	226.5	868.0	26.1	17.8	2.1	61.0	7.0	51.0	5.9	43.0	
2006	239.0	786.0	30.4	17.8	2.3	61.0	7.8	51.0	6.5	43.0	
2007	182.1	614.0	29.7	17.8	2.9	61.0	9.9	51.0	8.3	43.0	
2008	173.4	550.0	31.5	28.0	5.1	98.0	17.8	82.0	14.9	70.0	1
2009	127.2	649.0	19.6	28.0	4.3	98.0	15.1	82.0	12.6	70.0	]
2010	123.3	862.0	14.3	28.0	3.2	98.0	11.4	82.0	9.5	70.0	
2011	103.0	106.0	97.2	28.0	26.4	98.0	92.5	82.0	77.4	70.0	(
2012	122.0	1030.0	11.8	28.0	2.7	98.0	9.5	82.0	8.0	70.0	
2013	220.0	1360.0	16.2	28.0	2.1	98.0	7.2	82.0	6.0	70.0	
cific saury											
Year	Catch	Abundance	%		Estima	ted prey const	umption by three	baleen whale s	pecies (thousand	l tons)	
				Eq-2	% of biomass	Eq 3-1	% of biomass	Eq 4	% of biomass	Eq combined	% of biomas
2000	281.9	N.D.	-	28.0	-	74.0	-	65.0	-	56.0	
2001	367.4	N.D.	-	28.0	-	74.0	-	65.0		56.0	
2001	328.6	N.D.	_	28.0		74.0		65.0		56.0	
2002	440.3	2,490.5	17.7	28.0	1.1	74.0	3.0	65.0	2.6	56.0	
2003	353.8	2,490.5	17.7	28.0	1.1	74.0	2.8	65.0	2.0	56.0	
2004	469.1	2,355.5	19.9	28.0	1.1	74.0		65.0	2.3	56.0	
2005	389.6	2,333.3	19.9	28.0	1.2		3.1 3.4		2.0	56.0	
						74.0		65.0			
2007	519.3	1,135.5	45.7	28.0	2.5	74.0	6.5	65.0	5.7	56.0	
2008	606.0	2,435.0	24.9	22.0	0.9	65.0	2.7	56.0	2.3	48.0	
2009	469.7	2,097.0	22.4	22.0	1.0	65.0	3.1	56.0	2.7	48.0	
2010	415.7	690.5	60.2	22.0	3.2	65.0	9.4	56.0	8.1	48.0	
2011	448.7	1,248.5	35.9	22.0	1.8	65.0	5.2	56.0	4.5	48.0	
2012	455.4	817.5	55.7	22.0	2.7	65.0	8.0	56.0	6.9	48.0	
	404.0	1,008.0	40.1		2.2	65.0	6.4	56.0	5.6	48.0	

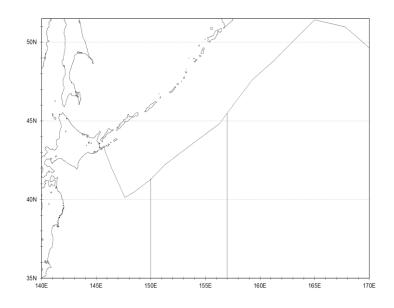



Figure 1. The definition of sub-areas for research area.

## Common minke whale

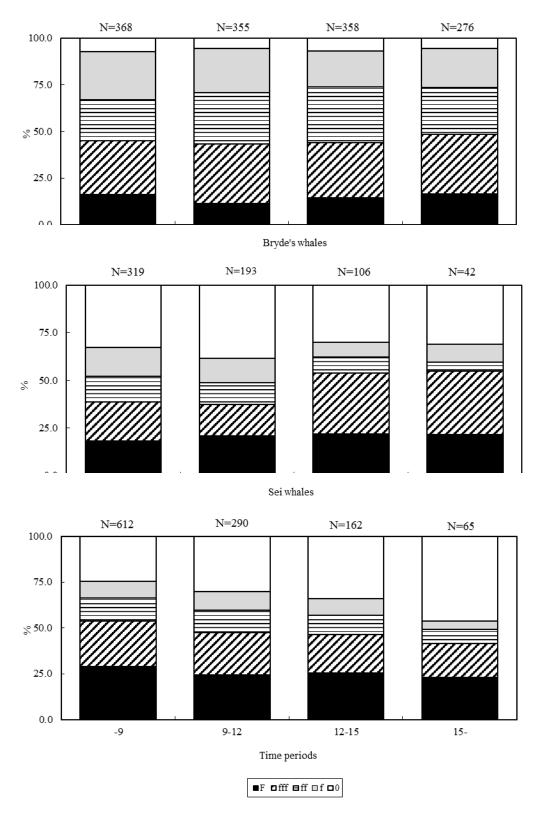



Figure 2. Composition of prey freshness categories throughout the day in each whale species

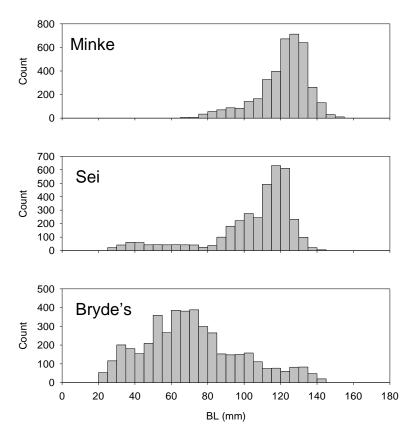



Figure 3-1. The size distribution of Japanese anchovy in the stomach contents of three baleen whale species.

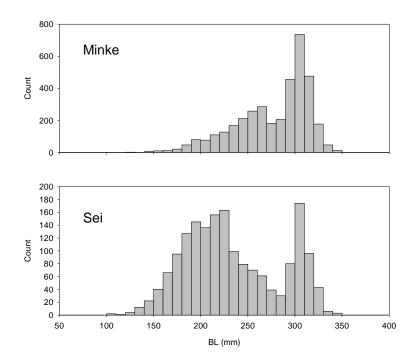



Figure 3-2. The size distribution of Pacific saury in the stomach contents of three baleen whales.

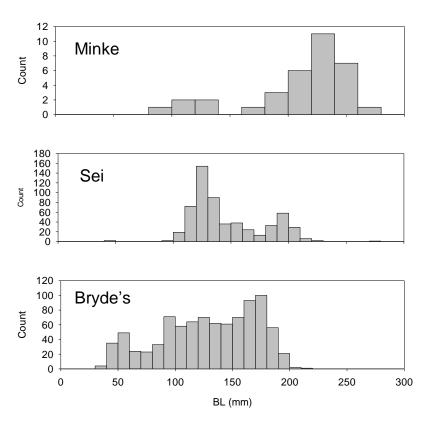
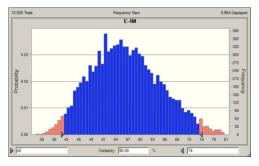
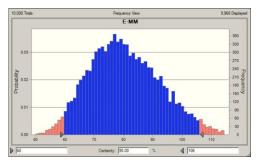




Figure 3-3. The size distribution of mackerels in the stomach contents of three baleen whales.

## **Appendix 1.** The results of simulations

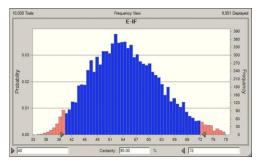
- Daily consumption of common minke whales per capita
- Equation-2
- Early season (May and June)


Immature male

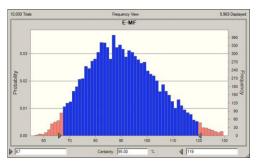


Forecast: E-IM

r orecusu r	
Statistic	Forecast va
Trials	10,000
Base Case	53
Mean	57
Median	56
Mode	'
Standard I	) 9
Variance	73
Skewness	0.3002
Kurtosis	2.72
Coeff. of V	0.1513
Minimum	35
Maximum	89
Mean Std.	0

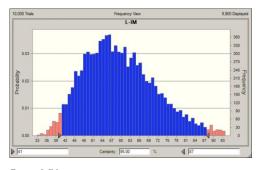

## Mature male




Forecast: E-MM

r orecusu r	
Statistic	Forecast va
Trials	10,000
Base Case	76
Mean	81
Median	80
Mode	'
Standard D	12
Variance	145
Skewness	0.3214
Kurtosis	2.71
Coeff. of V	0.1494
Minimum	50
Maximum	121
Mean Std.	1 0

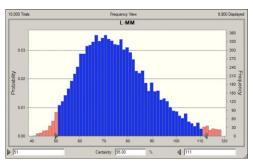
Immature female




Forecast: E-	IF
Statistic	Forecast va
Trials	10,000
Base Case	52
Mean	55
Median	54
Mode	
Standard D	8
Variance	67
Skewness	0.3433
Kurtosis	2.82
Coeff. of V	0.1499
Minimum	34
Maximum	86
Mean Std. 1	0

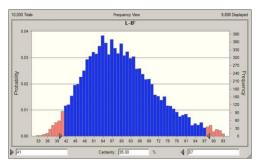


Forecast: E-MF	
Statistic F	orecast va
Trials	10,000
Base Case	86
Mean	91
Median	90
Mode '-	
Standard D	14
Variance	189
Skewness	0.3165
Kurtosis	2.69
Coeff. of V	0.1515
Minimum	57
Maximum	140
Mean Std. 1	0

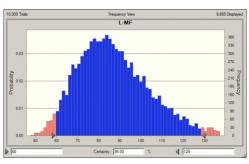

- Daily consumption of common minke whales *per capita*
- Equation-2
- Late season (From July to September)



Forecast: L-IM

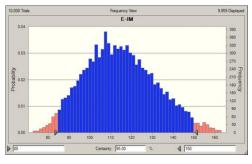

Statistic	Forecast va	
Trials	10,000	
Base Case	54	
Mean	60	
Median	59	
Mode	'	
Standard D	12	
Variance	145	
Skewness	0.647	
Kurtosis	3.39	
Coeff. of V	0.2003	
Minimum	33	
Maximum	113	
Mean Std. ]	0	

#### Mature male




Forecast: L-MM	
Statistic	Forecast va
Trials	10,000
Base Case	69
Mean	76
Median	74
Mode	
Standard D	15
Variance	236
Skewness	0.668
Kurtosis	3.43
Coeff. of V	0.2034
Minimum	40
Maximum	144
Mean Std. 1	0

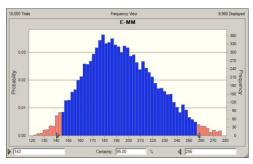
## Immature female




Forecast: L-IF	
Statistic	Forecast va
Trials	10,000
Base Case	55
Mean	60
Median	59
Mode	·
Standard D	12
Variance	142
Skewness	0.6573
Kurtosis	3.43
Coeff. of V	0.1989
Minimum	32
Maximum	113
Mean Std.	0



Forecast: L-MF	
Statistic	Forecast va
Trials	10,000
Base Case	80
Mean	88
Median	85
Mode	'
Standard I	0 18
Variance	313
Skewness	0.7169
Kurtosis	3.57
Coeff. of V	0.2018
Minimum	48
Maximum	166
Mean Std.	0


- Daily consumption of common minke whales *per capita*
- Equation-3-1
- Early season (May and June)

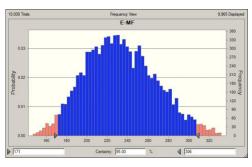


Forecast: E-IM

I Olecust. E 101		
Statistic	Forecast va	
Trials	10,000	
Base Case	108	
Mean	115	
Median	114	
Mode	'	
Standard E	<b>)</b> 17	
Variance	297	
Skewness	0.314	
Kurtosis	2.76	
Coeff. of V	0.1501	
Minimum	73	
Maximum	180	
Mean Std.	0	

#### Mature male




Forecast: E-MM

Statistic	Forecast va
Trials	10,000
Base Case	184
Mean	194
Median	192
Mode	'
Standard E	30
Variance	871
Skewness	0.3591
Kurtosis	2.79
Coeff. of V	0.1520
Minimum	121
Maximum	311
Mean Std.	1 0

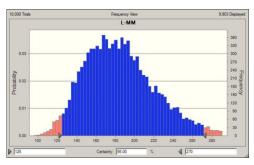
## Immature female



Forecast: E-IF	
Statistic	Forecast va
Trials	10,000
Base Case	103
Mean	109
Median	108
Mode	'
Standard D	16
Variance	271
Skewness	0.3159
Kurtosis	2.75
Coeff. of V	0.1506
Minimum	66
Maximum	171
Mean Std.	0



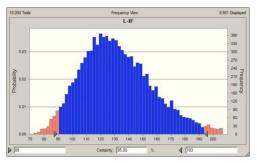
Forecast: E-MF	
Statistic	Forecast va
Trials	10,000
Base Case	220
Mean	233
Median	231
Mode	'
Standard D	35
Variance	1,232
Skewness	0.2926
Kurtosis	2.75
Coeff. of V	0.1504
Minimum	147
Maximum	356
Mean Std.	0


- Daily consumption of common minke whales *per capita*
- Equation-3-1
- Late season (From July to September)

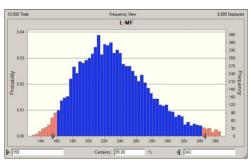


Forecast: L-IM

Forecast va	
10,000	
120	
131	
128	
'	
26	
676	
0.6605	
3.42	
0.1979	
72	
245	
1 0	
	120 131 128 


#### Mature male




Forecast: L-MM

Statistic	Forecast va
Trials	10,000
Base Case	169
Mean	186
Median	182
Mode	'
Standard I	37
Variance	1,397
Skewness	0.6494
Kurtosis	3.48
Coeff. of V	0.2011
Minimum	96
Maximum	357
Mean Std.	1 0

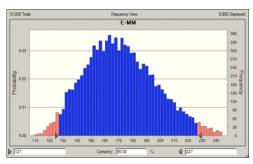
## Immature female




Forecast: L-IF	
Statistic	Forecast va
Trials	10,000
Base Case	120
Mean	133
Median	130
Mode	'
Standard I	26
Variance	696
Skewness	0.6502
Kurtosis	3.48
Coeff. of V	0.1988
Minimum	73
Maximum	258
Mean Std.	0



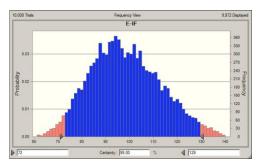
Forecast: L-MF	
Statistic F	orecast va
Trials	10,000
Base Case	211
Mean	234
Median	229
Mode '-	
Standard D	47
Variance	2,214
Skewness	0.6536
Kurtosis	3.39
Coeff. of V	0.2009
Minimum	129
Maximum	459
Mean Std.	0


- Daily consumption of common minke whales *per capita*
- Equation-4
- Early season (May and June)



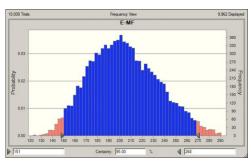
Forecast: E-IM

I Oleetabli El IIII		
Statistic	Forecast va	
Trials	10,000	
Base Case	98	
Mean	104	
Median	103	
Mode	'	
Standard D	15	
Variance	237	
Skewness	0.292	
Kurtosis	2.73	
Coeff. of V	0.1484	
Minimum	64	
Maximum	158	
Mean Std.	0	


#### Mature male

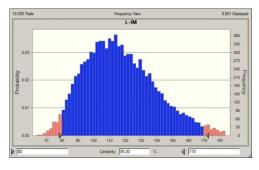


Forecast: E-MM


Forecast va
10,000
162
172
170
'
26
670
0.3656
2.81
0.1506
109
271
0

## Immature female

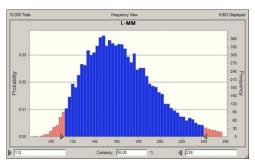



Forecast: E-IF		
Statistic	Forecast va	
Trials	10,000	
Base Case	93	
Mean	99	
Median	97	
Mode	·	
Standard I	0 15	
Variance	219	
Skewness	0.2972	
Kurtosis	2.71	
Coeff. of V	0.1503	
Minimum	61	
Maximum	153	
Mean Std.	0	

## Mature female



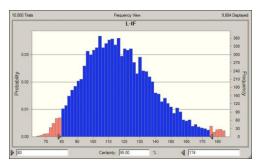
Forecast: E-MF Statistic Forecast va Trials 10,000 Base Case 193 Mean 204 Median 202 Mode ·___ 31 Standard D 947 Variance Skewness 0.3291 Kurtosis 2.76 Coeff. of V 0.1507 122 Minimum Maximum 318 Mean Std. 0


- Daily consumption of common minke whales *per capita*
- Equation-4
- Late season (From July to September)

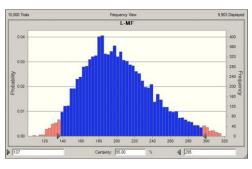


### Forecast: L-IM

I ofecust. I	
Statistic	Forecast va
Trials	10,000
Base Case	107
Mean	118
Median	115
Mode	'
Standard E	23
Variance	552
Skewness	0.6447
Kurtosis	3.38
Coeff. of V	0.1998
Minimum	64
Maximum	224
Mean Std.	1 0

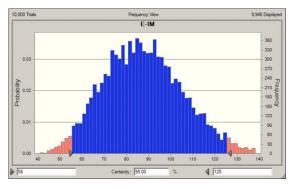

## Mature male

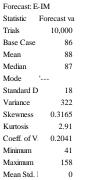



Forecast:	L-MM
Statistic	Forecast va

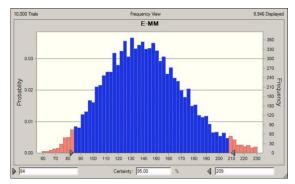
Statistic	Forecast va
Trials	10,000
Base Case	149
Mean	164
Median	161
Mode	·
Standard I	33
Variance	1,086
Skewness	0.6581
Kurtosis	3.39
Coeff. of V	0.2005
Minimum	85
Maximum	325
Mean Std.	0

## Immature female





Forecast: L-I	F
Statistic F	orecast va
Trials	10,000
Base Case	107
Mean	118
Median	116
Mode '-	
Standard D	24
Variance	561
Skewness	0.7055
Kurtosis	3.69
Coeff. of V	0.2005
Minimum	64
Maximum	231
Mean Std.	0

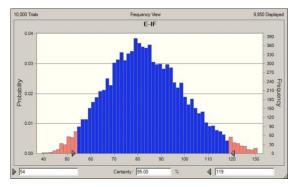



Forecast: L-MF		
Statistic	Forecast va	
Trials	10,000	
Base Case	184	
Mean	203	
Median	198	
Mode	·	
Standard D	40	
Variance	1,637	
Skewness	0.6594	
Kurtosis	3.48	
Coeff. of V	0.1995	
Minimum	106	
Maximum	394	
Mean Std.	0	

- Daily consumption of common minke whales per capita
- Equation-Combined
- Early season (May and June)

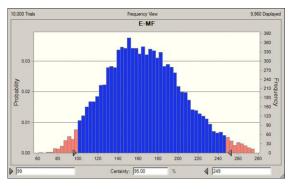





## Mature male

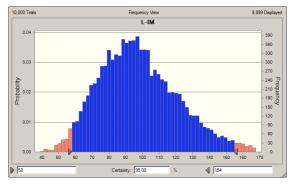



#### Forecast: E-MM


I oreedate E tomor		
Statistic	Forecast va	
Trials	10,000	
Base Case	141	
Mean	141	
Median	139	
Mode	'	
Standard E	32	
Variance	1,014	
Skewness	0.3564	
Kurtosis	2.99	
Coeff. of V	0.2258	
Minimum	59	
Maximum	283	
Mean Std.	1 0	

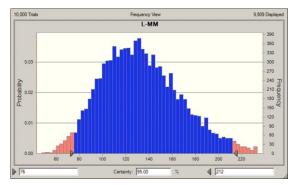
## Immature female





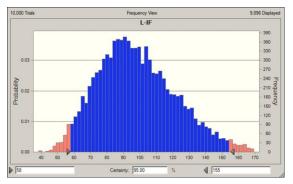

## Mature female

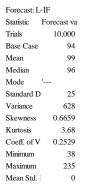


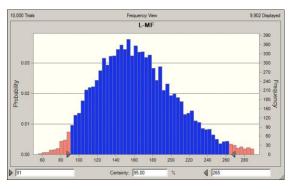

Forecast: E-MF Statistic Forecast va Trials 10,000 Base Case 166 Mean 167 Median 165 Mode 39 Standard D Variance 1,510 Skewness 0.3247 Kurtosis 2.86 Coeff. of V 0.2327 Minimum 61 Maximum 314 Mean Std. 0

- Daily consumption of common minke whales per capita
- Equation-Combined
- Late season (From July to September)



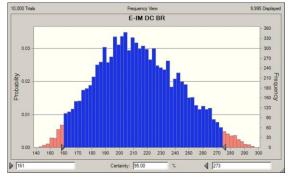

Forecast: L-IM		
Statistic Fo	orecast va	
Trials	10,000	
Base Case	94	
Mean	99	
Median	96	
Mode '	-	
Standard D	25	
Variance	606	
Skewness	0.6533	
Kurtosis	3.61	
Coeff. of V	0.2499	
Minimum	39	
Maximum	221	
Mean Std.	0	


## Mature male



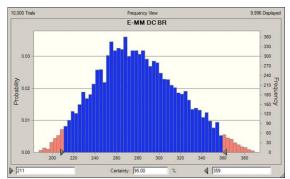

Forecast: I	-MM
Statistic	Forecast va
Trials	10,000
Base Case	129
Mean	134
Median	131
Mode	'
Standard E	35
Variance	1,248
Skewness	0.5984
Kurtosis	3.46
Coeff. of V	0.2631
Minimum	48
Maximum	306
Mean Std.	1 0

## Immature female



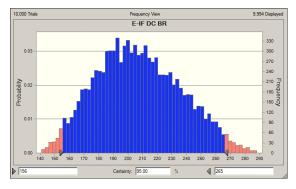




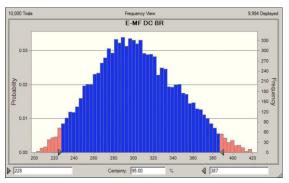


Forecast: L-MF	
Statistic	Forecast va
Trials	10,000
Base Case	158
Mean	164
Median	160
Mode	'
Standard D	45
Variance	2,008
Skewness	0.6131
Kurtosis	3.5
Coeff. of V	0.2725
Minimum	56
Maximum	387
Mean Std.	0

- Daily consumption of common Bryde's whales per capita
- Equation-2
- Early season (May and June)



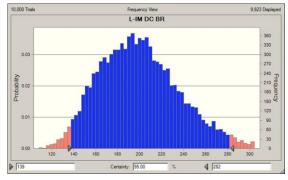

Forecast: E-IM DC BR	
Statistic	Forecast va
Trials	10,000
Base Case	204
Mean	214
Median	212
Mode '	
Standard E	30
Variance	881
Skewness	0.2192
Kurtosis	2.47
Coeff. of V	0.1389
Minimum	142
Maximum	302
Mean Std.	0

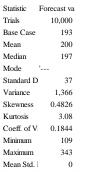
# Mature male



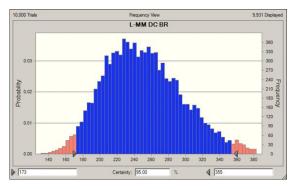

Forecast: E-MM DC B	
Statistic Fo	orecast va
Trials	10,000
Base Case	268
Mean	280
Median	278
Mode '	-
Standard D	39
Variance	1,507
Skewness	0.2272
Kurtosis	2.51
Coeff. of V	0.1384
Minimum	187
Maximum	395
Mean Std. 1	0

#### Immature female



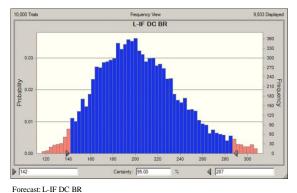







Forecast: E-MF DC BI	
Statistic	Forecast va
Trials	10,000
Base Case	289
Mean	303
Median	300
Mode	'
Standard I	42
Variance	1,728
Skewness	0.1991
Kurtosis	2.52
Coeff. of V	0.1374
Minimum	202
Maximum	427
Mean Std.	0

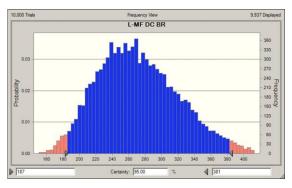
- Daily consumption of common Bryde's whales per capita
- Equation-2
- Late season (From July to September)





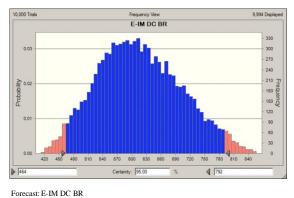

#### Mature male




Forecast: L-MM DC B	
Statistic	Forecast va
Trials	10,000
Base Case	243
Mean	252
Median	247
Mode	'
Standard D	47
Variance	2,186
Skewness	0.4883
Kurtosis	3.12
Coeff. of V	0.1858
Minimum	131
Maximum	458
Mean Std.	0

#### Immature female

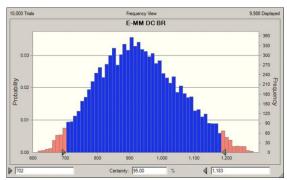





#### Mature female



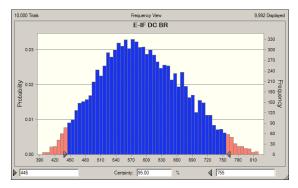
Forecast: L-MF DC BI Statistic Forecast va Trials 10,000 Base Case 262 272 Mean Median 268 Mode Standard D 50 2,503 Variance 0.4504 Skewness Kurtosis 2.96 Coeff. of V 0.1837 Minimum 151 490 Maximum Mean Std. 1

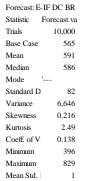

- Daily consumption of common Bryde's whales per capita
- Equation-3-1
- Early season (May and June)



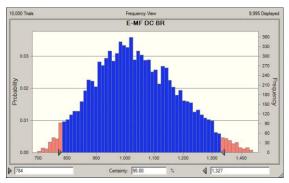
StatisticForecast vaTrials10,000Base Case590Mean616Median611

meun	010
Median	611
Mode	'
Standard D	86
Variance	7,336
Skewness	0.2367
Kurtosis	2.52
Coeff. of V	0.139
Minimum	413
Maximum	863
Mean Std.	1


#### Mature male

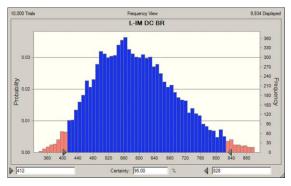



## Forecast: E-MM DC B


Statistic	Forecast va
Trials	10,000
Base Case	889
Mean	929
Median	922
Mode	'
Standard E	126
Variance	15,890
Skewness	0.2036
Kurtosis	2.53
Coeff. of V	0.1357
Minimum	615
Maximum	1,317
Mean Std.	1 1

#### Immature female

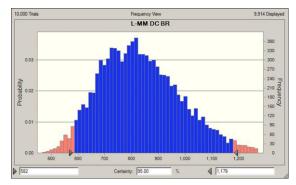






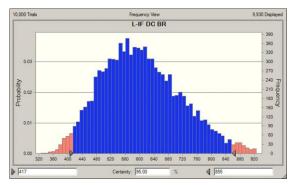
#### Mature female




Forecast: E-MF DC BF Statistic Forecast va Trials 10,000 994 Base Case 1,039 Mean Median 1,028 Mode Standard D 143 20,387 Variance 0.2296 Skewness 2.52 Kurtosis Coeff. of V 0.1374 Minimum 698 1,484 Maximum Mean Std. 1

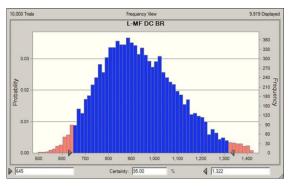
- Daily consumption of common Bryde's whales per capita
- Equation-3-1
- Late season (From July to September)





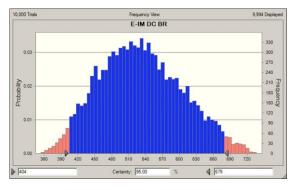

# Mature male




Forecast: L-MM DC B	
Statistic	Forecast va
Trials	10,000
Base Case	806
Mean	837
Median	821
Mode	'
Standard D	155
Variance	23,884
Skewness	0.5485
Kurtosis	3.23
Coeff. of V	0.1847
Minimum	468
Maximum	1,495
Mean Std.	2

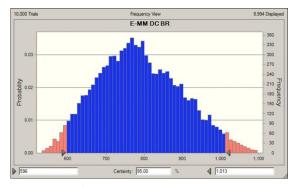
#### Immature female




Forecast: L	-IF DC BR
Statistic	Forecast va
Trials	10,000
Base Case	586
Mean	607
Median	597
Mode	'
Standard D	113
Variance	12,850
Skewness	0.4908
Kurtosis	3.08
Coeff. of V	0.1867
Minimum	326
Maximum	1,105
Mean Std.	1

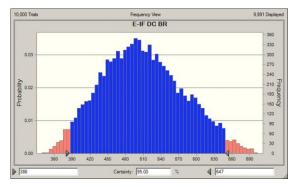
# Mature female




Forecast: L-MF DC BI Statistic Forecast va Trials 10,000 Base Case 903 Mean 938 Median 920 Mode Standard D 174 Variance 30,262 Skewness 0.504 Kurtosis 3.15 Coeff. of V 0.1855 Minimum 497 Maximum 1,704 Mean Std. 2

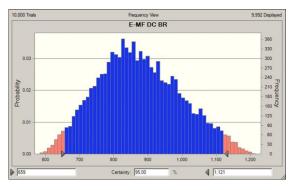
- Daily consumption of common Bryde's whales per capita
- Equation-4
- Early season (May and June)




Forecast: E-IM DC BR	
Statistic	Forecast va
Trials	10,000
Base Case	508
Mean	532
Median	528
Mode	·
Standard D	73
Variance	5,324
Skewness	0.2277
Kurtosis	2.5
Coeff. of V	0.1372
Minimum	355
Maximum	750
Mean Std.	1

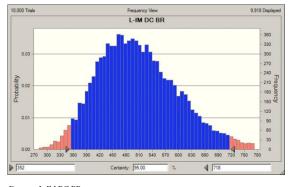
# Mature male




Forecast: E-MM DC B	
Statistic	Forecast va
Trials	10,000
Base Case	753
Mean	789
Median	781
Mode	'
Standard D	110
Variance	12,017
Skewness	0.243
Kurtosis	2.52
Coeff. of V	0.1390
Minimum	533
Maximum	1,103
Mean Std.	1

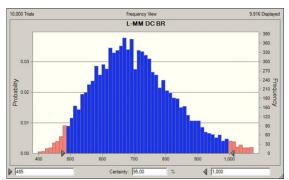
## Immature female





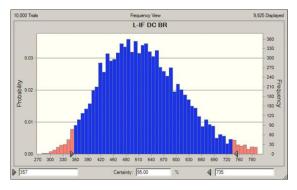

## Mature female

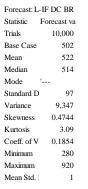


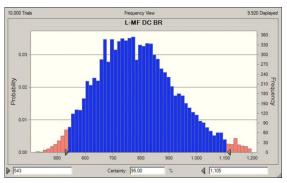

Forecast: E-MF DC BI Statistic Forecast va Trials 10,000 Base Case 837 875 Mean Median 866 Mode Standard D 121 Variance 14,655 0.2284 Skewness Kurtosis 2.5 0.1384 Coeff. of V Minimum 584 Maximum 1,240 Mean Std. ] 1

- Daily consumption of common Bryde's whales per capita
- Equation-4
- Late season (From July to September)



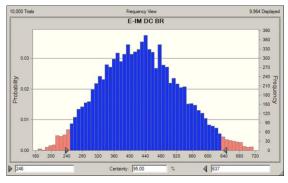

Forecast: L-IM DC BR		
Statistic	Statistic Forecast va	
Trials	10,000	
Base Case	491	
Mean	510	
Median	500	
Mode '		
Standard D	94	
Variance	8,795	
Skewness	0.5337	
Kurtosis	3.21	
Coeff. of V	0.184	
Minimum	282	
Maximum	928	
Mean Std.	1	


## Mature male



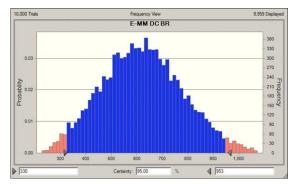

Forecast: L-MM DC B	
Statistic	Forecast va
Trials	10,000
Base Case	682
Mean	705
Median	691
Mode	·
Standard E	132
Variance	17,337
Skewness	0.5513
Kurtosis	3.25
Coeff. of V	0.1868
Minimum	398
Maximum	1,231
Mean Std.	1

#### Immature female



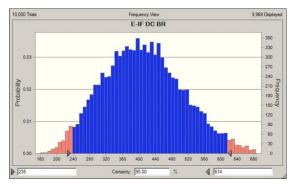






Forecast: L-N	AF DC BI
Statistic F	orecast va
Trials	10,000
Base Case	760
Mean	789
Median	777
Mode '-	
Standard D	145
Variance	20,962
Skewness	0.4606
Kurtosis	3.09
Coeff. of V	0.1834
Minimum	424
Maximum	1,371
Mean Std.	1

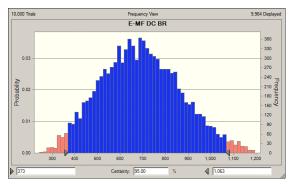
- Daily consumption of common Bryde's whales per capita
- Equation-Combined
- Early season (May and June)




Forecast: E-IM DC BR		
Statistic	Forecast va	
Trials	10,000	
Base Case	434	
Mean	430	
Median	427	
Mode	'	
Standard D	102	
Variance	10,369	
Skewness	0.2294	
Kurtosis	2.76	
Coeff. of V	0.2371	
Minimum	167	
Maximum	824	
Mean Std.	1	

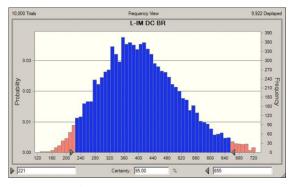
# Mature male




Forecast: E-MM DC B		
Statistic	Forecast va	
Trials	10,000	
Base Case	637	
Mean	624	
Median	619	
Mode	'	
Standard D	160	
Variance	25,561	
Skewness	0.2236	
Kurtosis	2.81	
Coeff. of V	0.2562	
Minimum	229	
Maximum	1,194	
Mean Std.	2	

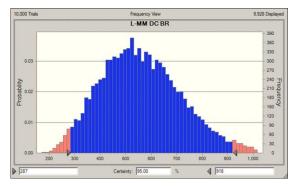
## Immature female




Forecast: E-IF DC BR	
Statistic	Forecast va
Trials	10,000
Base Case	417
Mean	411
Median	407
Mode	'
Standard D	98
Variance	9,533
Skewness	0.2537
Kurtosis	2.72
Coeff. of V	0.2377
Minimum	160
Maximum	751
Mean Std.	1

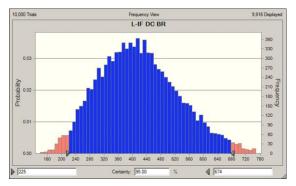
# Mature female




Forecast: E-MF DC BI Statistic Forecast va Trials 10,000 Base Case 707 Mean 694 Median 687 ·----Mode Standard D 179 Variance 31,923 0.2615 Skewness Kurtosis 2.79 Coeff. of V 0.2575 Minimum 244 Maximum 1,352 Mean Std. 1 2

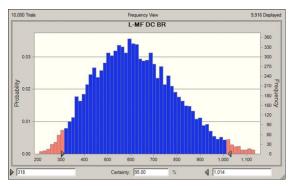
- Daily consumption of common Bryde's whales per capita
- Equation-Combined
- Late season (From July to September)




Forecast: L-IM DC BR		
Statistic	Forecast va	
Trials	10,000	
Base Case	419	
Mean	410	
Median	401	
Mode	'	
Standard E	0 112	
Variance	12,564	
Skewness	0.4931	
Kurtosis	3.21	
Coeff. of V	0.2732	
Minimum	127	
Maximum	908	
Mean Std.	1 1	

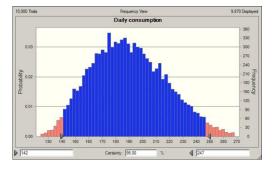
# Mature male




Forecast: L-MM DC B		
Statistic F	orecast va	
Trials	10,000	
Base Case	577	
Mean	564	
Median	550	
Mode '		
Standard D	161	
Variance	25,965	
Skewness	0.4652	
Kurtosis	3.13	
Coeff. of V	0.2858	
Minimum	172	
Maximum	1,243	
Mean Std.	2	

## Immature female

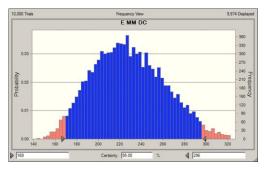



Forecast: L-IF DC BR	
Statistic	Forecast va
Trials	10,000
Base Case	428
Mean	421
Median	412
Mode	·
Standard E	116
Variance	13,555
Skewness	0.4894
Kurtosis	3.21
Coeff. of V	0.2763
Minimum	141
Maximum	944
Mean Std.	1

## Mature female



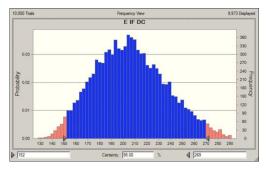
Forecast: L-MF DC BI Statistic Forecast va Trials 10,000 Base Case 642 Mean 626 Median 611 Mode Standard D 182 32,981 Variance Skewness 0.4881 Kurtosis 3.22 Coeff. of V 0.2902 Minimum 207 Maximum 1,486 Mean Std. 2


- Daily consumption of common Sei whales per capita
- Equation-2
- Early season (May and June)



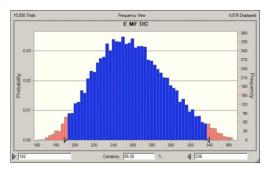
#### Forecast: E IM DC Statistic Forecast va

Statistic	i orcease va
Trials	10,000
Base Case	182
Mean	190
Median	188
Mode	'
Standard I	28
Variance	777
Skewness	0.3016
Kurtosis	2.66
Coeff. of V	0.1467
Minimum	124
Maximum	283
Mean Std.	1 0


## Mature male

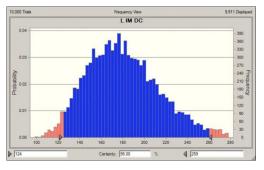


#### Forecast: E MM DC


Statistic	Forecast va
Trials	10,000
Base Case	217
Mean	228
Median	226
Mode	'
Standard E	33
Variance	1,121
Skewness	0.2658
Kurtosis	2.63
Coeff. of V	0.1466
Minimum	143
Maximum	339
Mean Std.	0

#### Immature female

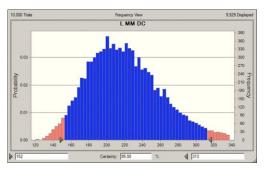





## Mature female



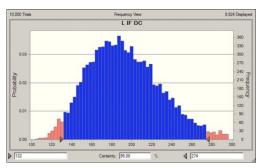
Forecast: E MF DC Statistic Forecast va 10,000 Trials 247 Base Case Mean 259 Median 257 Mode '----Standard D 37 1,397 Variance Skewness 0.2523 Kurtosis 2.64 Coeff. of V 0.1443 Minimum 162 Maximum 394 Mean Std. 0


- Daily consumption of common Sei whales *per capita*
- Equation-2
- Late season (From July to September)

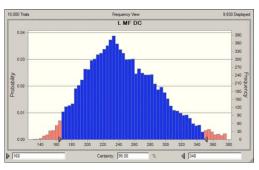


Forecast: L IM DC

Statistic	Forecast va
Trials	10,000
Base Case	170
Mean	181
Median	178
Mode	·
Standard I	34
Variance	1,190
Skewness	0.595
Kurtosis	3.41
Coeff. of V	/ 0.1904
Minimum	98
Maximum	345
Mean Std.	0

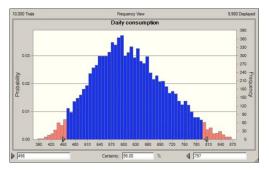

# Mature male




Forecast: L MM DC Statistic Forecast va

10 tutiotic	r orecuse ru
Trials	10,000
Base Case	208
Mean	221
Median	217
Mode	'
Standard E	42
Variance	1,727
Skewness	0.5671
Kurtosis	3.27
Coeff. of V	0.1883
Minimum	121
Maximum	405
Mean Std.	0

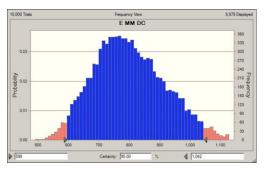
# Immature female




Forecast: L IF DC	
Statistic F	orecast va
Trials	10,000
Base Case	182
Mean	193
Median	190
Mode '-	
Standard D	37
Variance	1,351
Skewness	0.5115
Kurtosis	3.15
Coeff. of V	0.19
Minimum	103
Maximum	339
Mean Std.	0

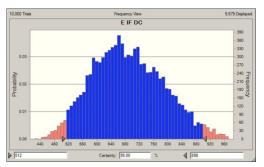


Forecast: L MF DC	
Statistic F	orecast va
Trials	10,000
Base Case	231
Mean	246
Median	241
Mode '-	
Standard D	47
Variance	2,185
Skewness	0.5022
Kurtosis	3.13
Coeff. of V	0.1901
Minimum	131
Maximum	445
Mean Std.	0

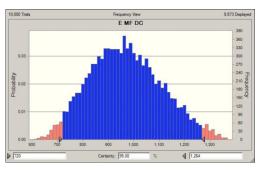

- Daily consumption of common Sei whales per capita
- Equation-3-1
- Early season (May and June)



Forecast: E IM DC

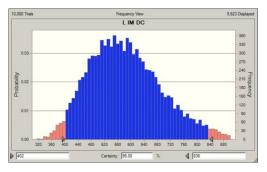

Statistic	Forecast va
Trials	10,000
Base Case	585
Mean	614
Median	608
Mode	'
Standard E	90
Variance	8,081
Skewness	0.2727
Kurtosis	2.62
Coeff. of V	0.1464
Minimum	387
Maximum	918
Mean Std.	1

## Mature male




Forecast: E MM DC	
Statistic	Forecast va
Trials	10,000
Base Case	762
Mean	800
Median	791
Mode	'
Standard D	116
Variance	13,555
Skewness	0.3026
Kurtosis	2.67
Coeff. of V	0.1455
Minimum	491
Maximum	1,224
Mean Std.	1

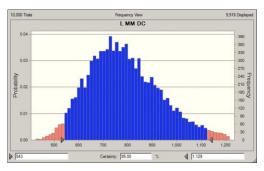
# Immature female




Forecast: E IF DC	
Statistic	Forecast va
Trials	10,000
Base Case	654
Mean	689
Median	681
Mode	·
Standard I	0 101
Variance	10,137
Skewness	0.2644
Kurtosis	2.63
Coeff. of V	0.1462
Minimum	425
Maximum	1,042
Mean Std.	1

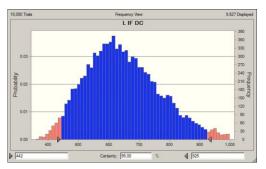


Forecast: E MF DC	
Statistic	Forecast va
Trials	10,000
Base Case	923
Mean	970
Median	963
Mode	'
Standard D	142
Variance	20,105
Skewness	0.2634
Kurtosis	2.67
Coeff. of V	0.1461
Minimum	608
Maximum	1,490
Mean Std.	1

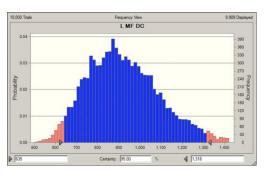

- Daily consumption of common Sei whales *per capita*
- Equation-3-1
- Late season (From July to September)



Forecast: L IM DC

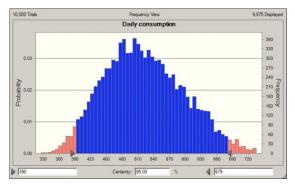

Statistic	Forecast va
Trials	10,000
Base Case	553
Mean	586
Median	575
Mode	'
Standard E	0 112
Variance	12,600
Skewness	0.5428
Kurtosis	3.14
Coeff. of V	0.1915
Minimum	315
Maximum	1,036
Mean Std.	1 1

## Mature male



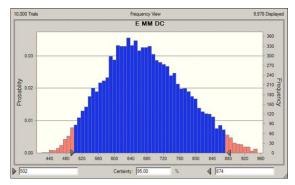

Forecast: L MM DC	
Statistic F	orecast va
Trials	10,000
Base Case	742
Mean	790
Median	773
Mode '-	
Standard D	151
Variance	22,940
Skewness	0.5897
Kurtosis	3.32
Coeff. of V	0.1918
Minimum	425
Maximum	1,469
Mean Std.	2

# Immature female




Statistic Forecast va Trials 10,000
Trials 10,000
Base Case 610
Mean 649
Median 636
Mode '
Standard D 124
Variance 15,413
Skewness 0.5261
Kurtosis 3.14
Coeff. of V 0.1913
Minimum 360
Maximum 1,180
Mean Std. 1

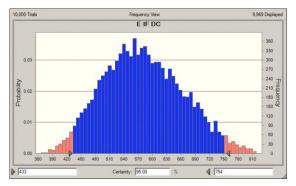


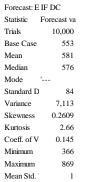

Forecast: L MF DC	
Statistic	Forecast va
Trials	10,000
Base Case	872
Mean	926
Median	907
Mode	'
Standard D	176
Variance	31,059
Skewness	0.5701
Kurtosis	3.29
Coeff. of V	0.1903
Minimum	505
Maximum	1,725
Mean Std.	2

- Daily consumption of common Sei whales per capita
- Equation-4
- Early season (May and June)

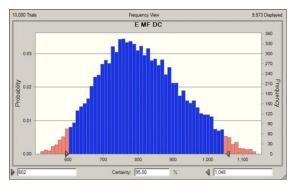


Forecast: E IM DC	
Statistic	Forecast va
Trials	10,000
Base Case	497
Mean	522
Median	516
Mode	'
Standard I	76
Variance	5,774
Skewness	0.2922
Kurtosis	2.63
Coeff. of V	0.1455
Minimum	326
Maximum	794
Mean Std.	1


# Mature male




# Forecast: E MM DCStatisticForecast vaTrials10,000Base Case640Mean675Median668

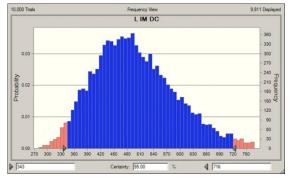

Mode '	
Standard D	98
Variance	9,699
Skewness	0.2745
Kurtosis	2.62
Coeff. of V	0.1460
Minimum	422
Maximum	1,042
Mean Std. 1	1

## Immature female





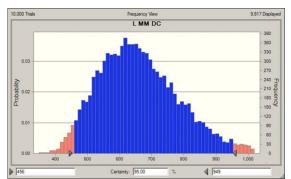
## Mature female




Forecast: E MF DC Statistic Forecast va Trials 10,000 Base Case 770 Mean 808 Median 799 Mode Standard D 117 Variance 13,748 Skewness 0.2856 Kurtosis 2.64 Coeff. of V 0.1451 Minimum 521 Maximum 1,244 Mean Std. 1

Daily consumption of common Sei whales per capita

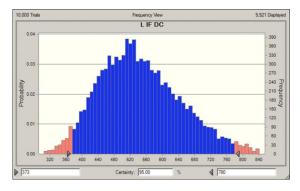
- Equation-4
- Late season (From July to September)


#### Immature male

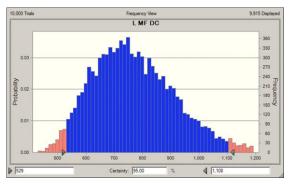


# Forecast: L IM DC

Statistic	Forecast va
Trials	10,000
Base Case	469
Mean	500
Median	489
Mode	·
Standard E	96
Variance	9,121
Skewness	0.5877
Kurtosis	3.27
Coeff. of V	0.191
Minimum	280
Maximum	920
Mean Std.	1 1

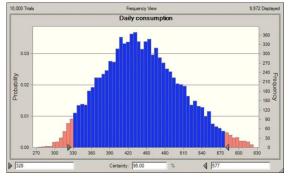

## Mature male




#### Forecast: L MM DC

Statistic	Forecast va
Trials	10,000
Base Case	622
Mean	663
Median	650
Mode	'
Standard D	127
Variance	16,092
Skewness	0.5738
Kurtosis	3.25
Coeff. of V	0.1913
Minimum	350
Maximum	1,254
Mean Std.	1

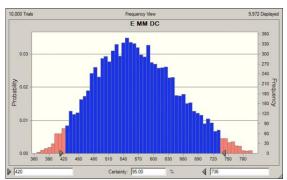
#### Immature female







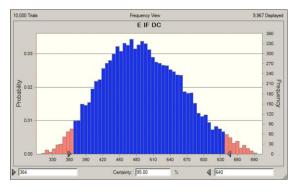

Coeff. of Variation	
Statistic	Forecast va
Trials	10,000
Base Case	727
Mean	773
Median	756
Mode	'
Standard D	149
Variance	22,300
Skewness	0.5647
Kurtosis	3.22
Coeff. of V	0.1932
Minimum	430
Maximum	1,429
Mean Std.	1


- Daily consumption of common Sei whales per capita
- Equation-Combined
- Early season (May and June)

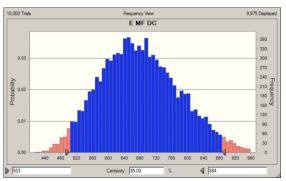


# Forecast: E IM DC

Statistic	Forecast va
Trials	10,000
Base Case	421
Mean	442
Median	438
Mode	'
Standard E	65
Variance	4,188
Skewness	0.2754
Kurtosis	2.7
Coeff. of V	0.1463
Minimum	273
Maximum	657
Mean Std.	1

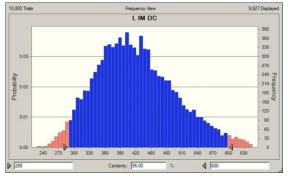

## Mature male




#### Forecast: E MM DC

Forecast va
10,000
539
567
562
'
82
6,796
0.2654
2.64
0.1453
366
853
1

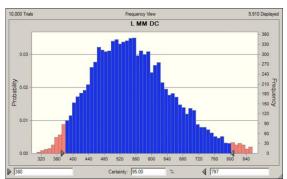
#### Immature female







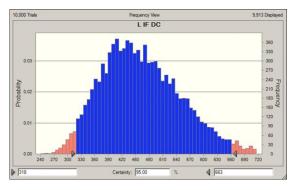

Forecast: E MF DC	
Statistic Fo	orecast va
Trials	10,000
Base Case	647
Mean	680
Median	674
Mode '	
Standard D	99
Variance	9,806
Skewness	0.2555
Kurtosis	2.67
Coeff. of V	0.1456
Minimum	415
Maximum	998
Mean Std.	1


- Daily consumption of common Sei whales per capita
- Equation-Combined
- Late season (From July to September)

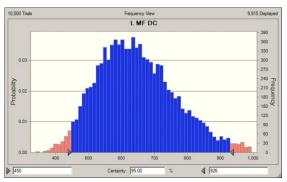


# Forecast: L IM DC

Statistic	Forecast va
Trials	10,000
Base Case	397
Mean	422
Median	413
Mode '	
Standard I	<b>b</b> 80
Variance	6,410
Skewness	0.5494
Kurtosis	3.24
Coeff. of V	0.1899
Minimum	228
Maximum	784
Mean Std.	1


## Mature male

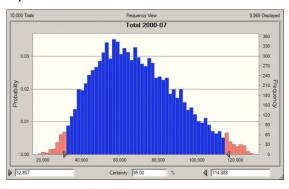



#### Forecast: L MM DC

Statistic	Forecast va
Trials	10,000
Base Case	524
Mean	556
Median	546
Mode	·
Standard E	107
Variance	11,419
Skewness	0.5879
Kurtosis	3.33
Coeff. of V	0.1921
Minimum	309
Maximum	1,058
Mean Std.	1

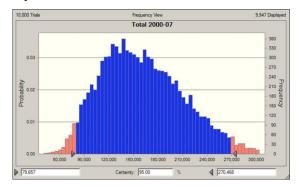
#### Immature female



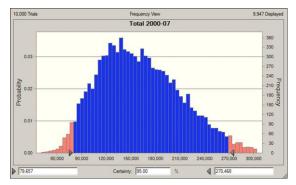





Forecast: L MF DC	
Statistic I	Forecast va
Trials	10,000
Base Case	610
Mean	650
Median	637
Mode	
Standard D	123
Variance	15,052
Skewness	0.5951
Kurtosis	3.35
Coeff. of V	0.1889
Minimum	341
Maximum	1,215
Mean Std.	1

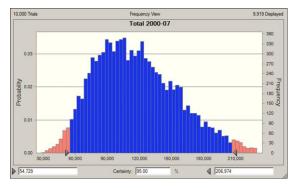

# • Seasonal consumption of common minke whales (Period: 2000-2007)

# Equation-2




Coeff. of Variation		
Statistic H	Forecast values	
Trials	10,000	
Base Case	44,985	
Mean	68,603	
Median	66,503	
Mode '		
Standard D	21,675	
Variance	469,798,585	
Skewness	0.4156	
Kurtosis	2.67	
Coeff. of V	0.3159	
Minimum	17,578	
Maximum	148,832	
Mean Std. ]	217	

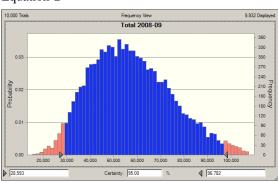
# Equation-4




Forecast: Total 2000-07 Statistic Forecast va Trials 10,000 94,773 Base Case 143,941 Mean Median 139,182 Mode '----Standard D 45,386 Variance ######### Skewness 0.4631 Kurtosis 2.81 Coeff. of V 0.3153 40,932 Minimum Maximum 317,567 Mean Std. 1 454 Equation-3-1



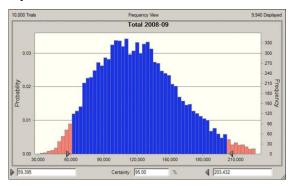
Forecast: Total 2000-07		
Statistic 1	Forecast values	
Trials	10,000	
Base Case	107,358	
Mean	162,045	
Median	156,901	
Mode		
Standard D	50,589	
Variance	2,559,293,269	
Skewness	0.466	
Kurtosis	2.82	
Coeff. of V	0.3122	
Minimum	41,147	
Maximum	343,101	
Mean Std.	506	


# Equation-Combined



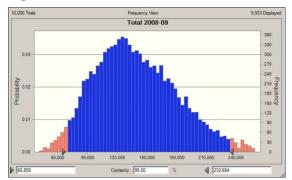
Forecast: Total 2000-07 Statistic Forecast va 10,000 Trials 82,372 Base Case Mean 118,250 Median 113,794 Mode ·----Standard D 39,855 Variance ######### Skewness 0.5996 Kurtosis 3.2 Coeff. of V 0.337 Minimum 28,552 Maximum 306,867 Mean Std. 399

• Seasonal consumption of common minke whales (Period: 2008-2014)



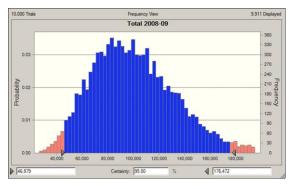



Forecast: Total 2008-09


Statistic	Forecast values
Trials	10,000
Base Case	38,144
Mean	57,803
Median	56,113
Mode	'
Standard D	17,758
Variance	315,351,117
Skewness	0.5002
Kurtosis	3.04
Coeff. of V	0.3072
Minimum	15,537
Maximum	139,075
Mean Std.	178

# Equation-4

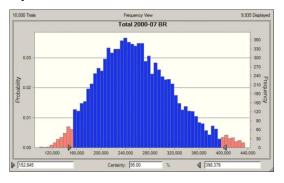



Forecast: Total 2008-0	
Statistic	Forecast va
Trials	10,000
Base Case	80,430
Mean	121,961
Median	118,984
Mode	'
Standard D	37,749
Variance	#########
Skewness	0.4702
Kurtosis	2.97
Coeff. of V	0.3095
Minimum	31,983
Maximum	290,612
Mean Std.	377

Equation-3-1

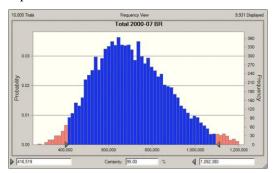


Forecast: Total 2008-0		
Statistic Forecast va		
Trials 10,000		
Base Case 91,124		
Mean 139,842		
Median 135,250		
Mode '		
Standard D 42,543		
Variance #########		
Skewness 0.4989		
Kurtosis 3.05		
Coeff. of V 0.3042		
Minimum 41,740		
Maximum 318,770		
Mean Std. 425		


# Equation-Combined

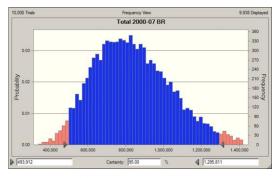


Forecast: Total 2008-0 Statistic Forecast va Trials 10,000 Base Case 69,899 Mean 101,285 Median 97,807 Mode Standard D 33,427 Variance ######### Skewness 0.6149 3.41 Kurtosis Coeff. of V 0.33 Minimum 26,753 276,956 Maximum Mean Std. 334


• Seasonal consumption of Bryde's whales (Period: 2000-2007)

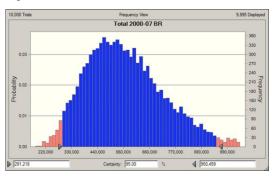
# Equation-2




Forecast: Total 2000-0'	
Statistic	Forecast va
Trials	10,000
Base Case	216,311
Mean	258,508
Median	252,996
Mode	'
Standard D	62,932
Variance	#########
Skewness	0.4783
Kurtosis	3.09
Coeff. of V	0.2434
Minimum	99,762
Maximum	529,349
Mean Std.	629

# Equation-4

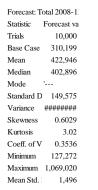



Forecast: Total 2000-0'	
Statistic I	Forecast va
Trials	10,000
Base Case	592,830
Mean	709,972
Median	693,478
Mode '	
Standard D	174,757
Variance	#########
Skewness	0.4718
Kurtosis	3.06
Coeff. of V	0.2461
Minimum	273,897
Maximum	1,451,402
Mean Std. ]	1,748

Equation-3-1

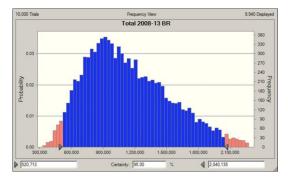


Forecast: Total 2000-0 Statistic Forecast va Trials 10,000 697,828 Base Case 838,508 Mean 820,152 Median Mode Standard D 206,974 Variance ######### 0.4749 Skewness Kurtosis 3.02 Coeff. of V 0.2468 Minimum 338,869 Maximum 1,772,378 Mean Std. ] 2,070


# Equation-Combined

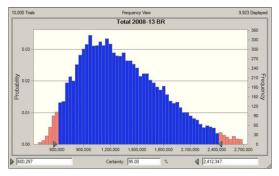


Forecast: Total 2000-0'	
Statistic	Forecast va
Trials	10,000
Base Case	502,323
Mean	562,673
Median	541,658
Mode	'
Standard E	171,384
Variance	#########
Skewness	0.6805
Kurtosis	3.47
Coeff. of V	0.3046
Minimum	177,358
Maximum	1,351,787
Mean Std.	1,714
wican biu.	1,/14


## • Seasonal consumption of Bryde's whales (Period: 2008-2014)

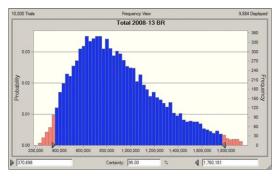
#### 10,000 Trials 9.933 Displaye Frequency View Total 2008-13 BR 330 - 300 - 270 0.03 240 - 210 Frequency Probability 0.0 120 0.01 90 60 30 0.0 190,606 √ 760,131 Certainty: 95.00 %




**Equation-2** 

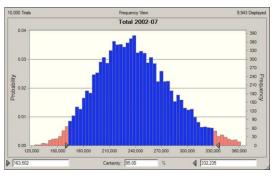
## Equation-4




Forecast: Total 2008-1 Statistic Forecast va 10,000 Trials 841,977 Base Case Mean 1,140,977 Median 1,076,095 Mode '---Standard D 404,227 Variance ######### Skewness 0.6235 Kurtosis 2.96 Coeff. of V 0.3543 329.063 Minimum Maximum 2,881,683 Mean Std. 4,042



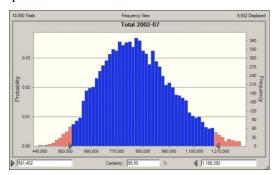





## Equation-Combined

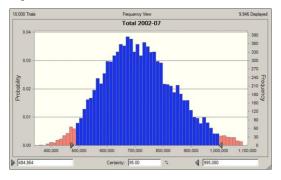


Forecast: Total 2008-1 Statistic Forecast va Trials 10,000 Base Case 713,961 Mean 906,350 Median 842,016 Mode Standard D 367,968 Variance ######### Skewness 0.8607 Kurtosis 3.68 Coeff. of V 0.4060 225,153 Minimum Maximum 2,956,664 Mean Std. 3,680 • Seasonal consumption of sei whales (Period: 2002-2007)



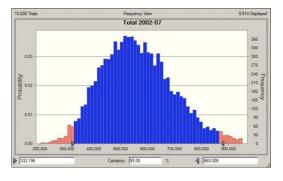



Forecast: Total 2002-0


Statistic	Forecast va
Trials	10,000
Base Case	211,250
Mean	239,326
Median	235,921
Mode	'
Standard E	43,653
Variance	#########
Skewness	0.4008
Kurtosis	3.05
Coeff. of V	0.1824
Minimum	123,697
Maximum	433,950
Mean Std.	437

# Equation-3-1




Forecast: Total 2002-0		
Statistic	Forecast va	
Trials	10,000	
Base Case	754,258	
Mean	856,025	
Median	845,364	
Mode	·	
Standard D	157,301	
Variance	#########	
Skewness	0.3927	
Kurtosis	3.01	
Coeff. of V	0.1838	
Minimum	436,129	
Maximum	1,565,693	
Mean Std.	1.573	

# Equation-4

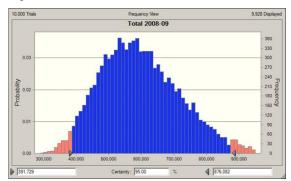


	10000
Forecast: Total 2002-0'	
Statistic I	Forecast va
Trials	10,000
Base Case	632,542
Mean	716,582
Median	707,782
Mode '	
Standard D	130,651
Variance	########
Skewness	0.3829
Kurtosis	3.1
Coeff. of V	0.1823
Minimum	359,384
Maximum	1,368,727
Mean Std.	1,307

# Equation-Combined

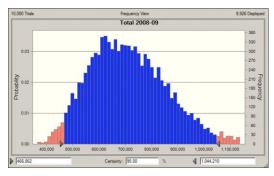


Forecast: Total 2002-0 Statistic Forecast va Trials 10,000 Base Case 532,683 Mean 565,510 553,781 Median '----Mode Standard D 137,484 Variance ######### Skewness 0.522 Kurtosis 3.4 Coeff. of V 0.2431 Minimum 205,268 Maximum 1,300,198 Mean Std. 1,375


• Seasonal consumption of sei whales (Period: 2008-2014)

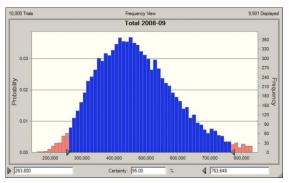
#### 10,000 Trials 9,928 Disp Total 2008-09 360 330 - 300 - 270 0.03 - 240 Frequency - 180 ncy - 150 y - 120 - 90 - 60 Probability 0.0 30 0 180,000 210,00 240 131,530 Certainty: 95.00 1 292,183

Forecast: Total 2008-0		
Statistic	Forecast va	
Trials	10,000	
Base Case	175,500	
Mean	199,642	
Median	195,031	
Mode	'	
Standard E	41,817	
Variance	#########	
Skewness	0.5448	
Kurtosis	3.14	
Coeff. of V	0.2095	
Minimum	93,181	
Maximum	389,023	
Mean Std.	418	


Equation-2

## Equation-4




Forecast: Total 2008-0	
Statistic F	Forecast va
Trials	10,000
Base Case	525,241
Mean	599,679
Median	587,368
Mode '-	
Standard D	125,095
Variance #	*#######
Skewness	0.5036
Kurtosis	3.12
Coeff. of V	0.2086
Minimum	289,642
Maximum	1,171,361
Mean Std.	1,251

## Equation-3-1





# Equation-Combined



Forecast: Total 2008-0 Statistic Forecast va Trials 10,000 Base Case 442,335 472,803 Mean Median 458,633 Mode '---Standard D 128,594 Variance ######### 0.6325 Skewness Kurtosis 3.47 Coeff. of V 0.2720 Minimum 159,233 Maximum 1,093,408 Mean Std. 1,286