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ABSTRACT 
 
Standard line transect analyses of JARPA survey data may result in biased estimates of minke whale abundance because 
in high density areas more time is spent confirming and/or sampling schools and hence survey effort is reduced. Density 
surface models (DSM) provide an alternative method of estimating abundance without relying on the survey design per 
se. However, these models do rely on the correct model being fitted with suitable explanatory variables and good 
coverage of survey effort throughout the study region. Analyses are further complicated by complex irregular coastlines 
and predictions are sensitive to extrapolation. However, these issues are being addressed by various research groups and 
it is anticipated that future methodological developments in model fitting would deal better with JARPA data than the 
methods currently being implemented.  
 
INTRODUCTION 
 
The Japanese Whale Research Program under Special Permit in the Antarctic (JARPA) has been conducting line 
transect surveys of minke whales in Antarctic waters every austral summer since 1987/1988 – the first two years being 
feasibility surveys (Nishiwaki et al., 2005). Estimates of abundance based on these data are necessary for the estimation 
of biological parameters associated with population dynamics. In addition, the relatively long time series of data 
available may provide useful information on the status of minke whale stocks in the Antarctic, and hence abundance 
estimates from these data may be of interest in other contexts. 
 
JARPA surveys were designed to ensure that the available survey area was covered spatially within an allocated time 
period, regardless of the conditions encountered. A pre-determined amount of effort was allocated for each day of the 
survey and if a vessel did not complete the allocated effort at the end of any given day, then it moved off-effort until it 
reached the starting point for the next day. In areas of high densities of whales, the realised survey effort was reduced as 
more time was spent confirming and/or sampling whale schools (IWC, 1998; Nishiwaki et al., 2005). Standard line 
transect (LT) analyses (Buckland et al., 2001) assume that survey effort is located independently of density, thus such 
analyses of JARPA data may result in biased estimates of abundance. LT estimators conventionally use design-based 
methods to draw inferences about the whole survey region from estimates within the searched strips.  
 
The extent of the bias in abundance estimates due to the JARPA survey protocol depends on the degree of clustering of 
the whales as well as whale density. A simulation study assessed the performance of three alternative approaches to 
estimate abundance; the approaches considered were the ‘count model’ and the ‘waiting-time model’ developed by 
Hedley et al. (1999) and the standard LT model. This study showed that the ‘count model’ performed best, with no, or 
only small, bias evident with appropriately chosen levels of smoothing (Clarke et al., 2000). However, it was not clear 
when using these methods on real data, how best to choose the appropriate level of smoothing and using inappropriate 
levels of smoothing could lead to substantially biased estimates of abundance. The count method involves fitting a 
spatially referenced density surface to counts of schools in small areas covered by search effort. The density surface 
estimator is a model-based estimator and it relies on the correct model being fitted to the data. In standard LT 
methodology, stratum-specific density estimates are obtained whereas the density surface model (DSM) allows density 
to be a function of location and environmental variables.  
 
This paper reviews the DSM approach and reflects on previous applications to the JARPA data.  
 
SURVEY DESIGN 
 
Brief details of the JARPA survey design are given here with full details in Nishiwaki et al. (2005). The main JARPA 
survey region encompasses the International Whaling Commission (IWC) Management Areas IV (70o-130oE) and V 
(130oE-170oW), south of 60ºS, with each Area being surveyed in alternate years. Although the whole research period 
ranged from the end of November to the middle of March, the majority of the research was conducted in January and 
February (which coincided with the IDCR/SOWER surveys). 
 
The survey regions were divided into four strata with a north-south boundary at approximately 45 nmiles from the ice 
edge and an east-west boundary at 100oE and 165oE for Areas IV and V, respectively. Prydz Bay stratum, in Area IV, 
was defined as being south of 66oS and the Ross Sea stratum, Area V, was defined as south of 69oS. Ice conditions 
dictated the extent of the size and extent of the strata, particularly for Prydz Bay and the Ross Sea strata. In the northern 
and Ross Sea strata a zigzag trackline was used and a saw-tooth shape used in the southern strata. Two diagonally 
connected tracklines creating a ‘z’ shape were used in Prydz Bay. A pre-determined distance was allocated for each day 
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of the survey and if a vessel didn’t complete the allocated distance at the end of any given day, the vessel moved off 
effort until it reached the start point for the following day. This ‘skip’ in the searching distance in a day may have been 
due to poor weather conditions and/or to sampling activity in areas of high density of whales. The skip was adopted for 
the first six seasons (1987/88 – 1992/93) but was abolished thereafter. 
 
During the surveys, two or three sighting and sampling vessels (SSVs) followed parallel transect lines, at fixed 
distances from each other. All sightings made while the vessels were on-effort (primary sightings) were recorded. 
Sightings made within 3nm of the transect line were approached by the vessel to confirm group size and species and to 
sample individuals from the group. Sightings made while the vessel was confirming and/or sampling were considered 
secondary sightings, and were not included in the analyses. After confirmation or sampling was completed, the vessel 
returned on-effort to the transect line at a 45º angle relative to the transect line. If during confirmation or sampling the 
vessel moved beyond 3nm from the line, it returned from the most advanced point reached during confirmation or 
sampling to the transect line at a 90º angle, and no search effort took place until it reached the transect line. 
 
A dedicated sighting vessel (SV) was introduced in 1991/1992. The SV travelled at least 12 nm ahead of the SSVs so 
that it was unaffected by sampling activities by the SSVs (Nishiwaki et al., 2005). The survey procedure by the SV 
consisted of closing mode (the vessel approached schools to confirm species and group size) and also passing mode 
(continuous search effort, with schools not being approached). In later years, the SSVs also operated in passing mode. 
Thus, vessels were either classed as SSV or SV and could operate in both closing and passing modes. 
 
ANALYSIS METHOD 
 
There are essentially four components to the DSM methodology; 1) fitting a detection function, 2) modelling school 
density, 3) estimating school size and 4) estimating variance. Each component is described below, along with further 
modifications of this basic DSM approach.  
 
Detection function estimation using MCDS  
Explanatory variables which influence detectability, in addition to perpendicular distance, are included in the detection 
function using the multiple covariate distance sampling (MCDS) approach developed by Marques (2001). This was 
achieved by setting the scale parameter in the detection function model to be an exponential function of the covariates 
(Marques, 2001; Marques and Buckland, 2003). In this way, a single model can be fitted with strata and vessel survey 
mode as the explanatory variables for example, rather than fitting separate detection functions to each strata/survey 
mode combination as in a conventional stratified LT analysis. The MCDS methods parameterise only the detection 
function scale parameter as a function of explanatory variables, the explanatory variables do not affect the shape of the 
detection function. Using the fully stratified LT method, both the scale and shape parameters can change because 
separate models can be fitted to each stratum/mode combination. Two forms of detection function were considered; the 
hazard-rate and the half-normal models and AIC was used to choose between different models. 
 
Spatial modelling of school density 
The ‘count model’ of Hedley et al. (1999) was used to model the trend in spatial distribution of minke whale schools. 
The response variable was the number of minke whale schools in segment i, , estimated using the Horvitz-
Thompson estimator (Horvitz and Thompson, 1952): 
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where ni is the number of schools detected in segment i,  is the estimated probability of detection of school j in 
segment i, obtained from the fitted model for the detection function described above, and ν is the total number of 
segments (i = 1, …, ν). To model the response as a function of spatial covariates, we used a GAM with spatially 
referenced covariates, with the following general formulation. 
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Here ai is an offset (parameter with known regression coefficient) that corresponds to the area of the ith segment, β0 
denotes the intercept and the fk are one-dimensional smooth functions (cubic smoothing splines) of the q spatial 
covariates z. Other variables are easily incorporated into this framework; for example, vessel survey mode was 
incorporated as a factor variable and denoted by Mi. Inclusion of a factor variable in this way created parallel predicted 
density surfaces. Two-way interactions between the spatially referenced covariates were also considered for inclusion in 
the model via two-dimensional smooths (Wood, 2003). In particular, a two-dimensional smooth of latitude and 
longitude intuitively has more appeal than the sum of the one-dimensional effects.  
 
The formulation shown in equation (2) assumed a logarithmic link function for the GAM. An appropriate form for the 
variance-mean relationship must also be selected and a quasi-likelihood formulation equivalent to an overdispersed 
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Poisson distribution was used so that the scale parameter was estimated as the constant of proportionality between the 
variance and the mean of the observations. 
 
Estimation of smoothing parameters in GAMs, as implemented in the software R (Ihaku and Gentleman, 1996) through 
the mgcv package (Wood, 2001), was done using Generalised Cross Validation (GCV). Model selection was made on 
the basis of the lowest GCV score and diagnostic plots.  
 
School size estimation 
The expected school size was estimated by stratum. It was calculated as the ratio of the Horvitz-Thompson estimate 
(Horvitz and Thompson, 1952) of the abundance of individuals to the Horvitz-Thompson estimate of the abundance of 
schools: 
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Here E(st) indicates the expected school size, with the subscript t identifying the stratum. The parameter stj is the 
observed size of the jth detected school in stratum t, with nt corresponding to the total number of detected schools in 
that stratum. The term  is the estimated detection probability of the jth detected school in stratum t, obtained from 
the fitted model for the detection function.  As in the stratified LT method, only schools with confirmed school sizes in 
closing mode were included in the school size estimation. Estimates of expected school sizes were obtained separately 
for SSV and SV mode sightings and also for all closing mode sightings (i.e. SSV+SV sightings). These school sizes 
were applied to passing mode data to obtain individual abundance from passing mode.  

tjp̂

  
Variance estimation 
Variances were estimated using a non-parametric bootstrap (Hedley and Buckland, 2004) which combined the three 
elements of the modelling; detection function estimation, density surface fitting and school size estimation. Having 
selected the terms of each element of the modelling using the original data, the whole modelling procedure was repeated 
on the bootstrap resample conditional upon these terms being in the model. The bootstrap resamples were generated 
using ‘day’ as the sampling unit, resampling with replacement.  
 
Alternative DSM formulations 
This general framework was readily adapted to different formulations of the model, thus providing additional flexibility 
should the nature of the problem and data dictate. Two alternative formulations of the basic methodology are described 
below. 
 
Multi-stage modelling of school density 
Instead of modelling density as shown in equation (2), the predicted densities of schools can also be obtained in three 
stages; first, fitting a logistic regression model to the presence/absence of schools; secondly, using a GAM to model the 
non-zero school densities; and then the product of the resultant surfaces from these previous steps gives a predictive 
map of school densities. For details see Paxton et al. (2006) 
 
Modelling density directly 

In equation (2), the response variable is with the area of the segment being taken into account in the model as an 
offset term. Density can be modelled directly by rearranging equation 2 as follows (again assuming a log-link 
formulation).  
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APPLICATION TO JARPA DATA 
 
Detection function estimation 
The probability of detection was likely to be dependent on many things and in their analyses of survey data from Area 
IV, Marques et al. (2003) considered school size, sighting cue, Beaufort sea state, survey mode, stratum and vessel in 
the detection function model. Of these they found school size to be the most important. Beaufort sea state, sighting cue 
and, to a lesser extent, vessel mode were also included in the models. In contrast, Burt et al. (2005) restricted the 
potential covariates used in the detection function model for Area V data to strata and vessel survey mode in order to 
compare results more easily with estimates obtained from the standard LT estimates of Hakamada et al. (2005). The 
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effective strip half-widths (esw) from the two methods (LT and MCDS) were generally similar although some 
differences did occur when the number of sightings in a stratum/survey mode combination was small. 
 
Density surface modelling 
The geographic coordinates, latitude and longitude, and distance from ice edge were used as explanatory variables in 
the DSM. The location of the ice edge was based on the position of the ice edge that was carefully charted by the ships’ 
officers while the vessels were in the southern strata. The fitted spatial models for Area IV comprised of smooth 
functions of the geographic coordinates and described a general decreasing trend in density with distance from the ice 
edge. 
 
Analysis of the Area V data proved less straightforward which was due in part to the more complex nature of the ice 
edge. Given the similarities in the survey region and methodology between years it was suggested that a more robust 
estimate may be achieved by combining all surveys together and including year as an additional explanatory variable 
(IWC, 2005). In Paxton et al. (2006) survey data in Area V was combined and a single model was fitted with survey 
year being incorporated into the model as an additional explanatory variable. However, the DSM could not simply be 
extended to the combined dataset because of computational and model fitting problems due to its large size and 
distributional properties (i.e. a large number of zeros). Therefore, the multi-stage modelling approach was used. 
However, this combined model was not entirely satisfactory. Unsurprisingly, the models fitted to individual survey 
years were generally simpler and also explained more of the variation in the data. More surprising was the failure of the 
combined model to model whale presence in narrow regions of open water and this may have been because the limited 
set of explanatory variables was inadequate to model substantial changes which occurred in the study region from year 
to year. Large errors associated with the multi-stage models were a result of combining two surfaces which each 
contained large estimated values; both surfaces were sensitive to the omission of data points which occurred in the 
bootstrap samples.  
 
School size estimates 
In Burt et al. (2005) school sizes were obtained separately for each stratum and vessel mode. Bearing in mind that 
school size estimates in SV closing mode were sometimes based on small number of sightings, the estimates tended to 
be higher for SV sightings than for SSV sightings although it is not clear that this tendency is significant or not. This 
was thought to occur because larger schools were missed during the sampling activities of the SSV rather than the SV 
missing more smaller schools than the SSVs. School size is an important influence on the estimates of whale abundance 
and a substantial difference between the abundance for the different survey modes was due to the differences in school 
size. 
 
Variance estimation 
The DSM has the potential to produce smaller estimates of variance than the standard LT approach because more of the 
variation in encounter rate is being explained by the model. In practice, the variance estimation procedure can give 
extreme bootstrap samples resulting in unrealistic bootstrap abundance estimates. These extreme values can then have a 
large influence on the coefficient of variation although the 95% ‘percentile confidence limits (using the lower and upper 
quartiles of the distribution) are less affected by extreme values.  
  
DISCUSSION 
 
There is no doubt that the DSM approach provides a flexible structure with which to estimate abundance when design-
based estimators may result in biased estimates. It also provides a framework to explore the underlying environmental 
factors that drive animal density and distribution. Their utility is compromised if inadequate explanatory variables are 
used and this application was limited by the lack of suitable explanatory variables. In these applications to JARPA data, 
latitude and longitude served as proxies for environmental and biological variables that were not available and so cannot 
be expected to fully explain the complex variability in minke whale distribution. Also, the ice edge could change 
substantially throughout the time period of the survey and this would affect not only the effectiveness of the distance 
from ice edge variable, but also the size of the study region. This could have consequences for prediction especially if 
densities varied as a consequence of a currently unmeasurable interaction of ice edge position with other variables such 
as the shelf edge. Data on the latter may be available but data on more transient variables (e.g. presence of krill) may 
not be available. 
 
Some of the computational and modelling difficulties associated with combining all surveys together and fitting a multi-
stage model could be alleviated. Using longer segment lengths, possibly varying the segment lengths by strata and 
appropriately weighting the observations, would reduce the size of the dataset and thus a single-stage model could be 
used. Other types of smoothers designed specifically for complex topographical regions may improve model fits, 
particularly for the complex survey boundaries of Area V. This is an area of ongoing research by various research 
groups throughout the world.  
 
Although the models do not rely on the design of the survey per se, they do require good coverage throughout the study 
region. The extension of the prediction grid to 60oS where, in most years, there was little search effort was a source of 
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variation in the bootstrap sample. GAMs are susceptible to edge effects and extrapolation (especially on a logarithmic 
scale) into a region where there is little, or no, data can generate unrealistic predicted values, both high and low.  
 
Despite the limitations the models did appear to have captured some of the spatial variation but it may be worth 
exploring the data set within a GAM framework that deals explicitly with spatial correlation in the error structure of the 
model.  
 
By applying the methods to JARPA data, problems in the spatial models were identified and have been improved. In 
this sense, JARPA contributed to the development of the spatial modelling. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 

1. DSM methods provide the means to correct for the non-random sampling design. 
2. Obtaining approximately unbiased estimates requires that:  
 a) the degree of smoothing is estimated correctly;  
 b) the methods can deal with irregularly shaped coastlines and 

c) the methods prevent unrealistic behaviour at the edges of the sampled region. 
3. However,  
 a) with non-independent sampling units (segment of effort), model selection tools which assume independence 

cannot be replied upon and so the degree of smoothing may be estimated incorrectly.  
 b) the present methods don’t deal well with complex irregular coastlines and 
 c) can go wrong at the edges of the study region (particularly when bootstrapping). 
4. Wood et al. (in prep) are developing methods to deal with the problems outlined in point 3. Given this we feel 

it wise to delay further work on DSM methods to deal with sampling from JARPA until their methods are 
developed sufficiently to be applied to these data. The prospects for robust DSM-based estimates from these 
data using the new methods are better than with the currently available methods. 
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